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Abstract. The Segment Anything Model (SAM) excels in image seg-
mentation. yet is challenged in multi-organ segmentation, due to the
inherent similarities between organ tissues and the substantial variabil-
ity in organ size, structure, and texture. This paper proposes to guide
the adaptation of SAM for multi-organ segmentation, introducing bi-
ological priors of organogenesis, where organs arise from specific germ
layers and develop with shared early-stage pathways before divergence
into unique structures. We present OG-SAM (Organogenesis SAM), a
new paradigm that enables organ-wise adaptation. First, we present Or-
ganAdapt (Organ Adaptation) that integrates a biologically inspired hi-
erarchical adaptation module into SAM, where parameter sharing and
specialization follow the developmental trajectory of organs. Second, to
effectively address variations in organ size, we propose GoF (Generalized
Organ-feature Fusion), a mechanism that facilitates organ-specific mul-
tiscale feature pyramid fusion, thereby enhancing segmentation accuracy
and robustness. OG-SAM functions as a query-based plug-in, seamlessly
integrating with SAM. Experiments show that OG-SAM outperforms
competing methods, particularly for challenging organ boundaries.

Keywords: Multi-Organ Segmentation · Organ-specific Adaptation ·
Segment Anything Model.

1 Introduction

Background. Accurate multi-organ segmentation enables a systematic assess-
ment of human health and is critical for various clinical applications [26,21,13].
Conventional multi-organ segmentation techniques, such as thresholding [11,23],
edge detection [29,22,17], and K-means clustering [27,31], rely on manually de-
signed features and parameter tuning. Further, these methods lack adaptability
and struggle to achieve robust performance across varying anatomical structures.

Deep learning has transformed image segmentation, enabling significant ad-
vancements in accuracy and efficiency [19,3]. Convolutional neural network (CNN)-
based architectures, such as U-Net [24], and its subsequent refinements, in-
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cluding nnU-Net [12] and UX-Net [15], have demonstrated remarkable perfor-
mance. More recently, Transformer-based models, such as nnFormer [30] and
UNETR [25], have further enhanced segmentation by leveraging self-attention
mechanisms. However, despite these advancements, existing methods often strug-
gle with generalizability across diverse datasets and tasks. Additionally, their
reliance on large volumes of annotated training data poses a significant chal-
lenge for real-world medical applications, where data annotation is costly and
labor-intensive.

The emerging Segment Anything Model (SAM), a large-scale foundational
model, has significantly advanced image segmentation. Evidence has shown that
SAM promises to effectively capture shape, structure, and advanced semantic
features for segmentation. Previous studies further demonstrated that only lim-
ited annotated data is needed for fine-tuning SAM, achieving better performance
over professional models on comprehensive datasets. For example, Chen et al. [2]
proposed MA-SAM, which devises a parameter-efficient fine-tuning strategy in-
troducing a 3D adapter into the image encoder to integrate volume or time
information, effectively adapting the 2D network backbone to the 3D medical
images. In addition, Gong et al. [6] developed a 3D SAM adapter that extends
SAM from 2D to 3D through overall architecture modifications to support vol-
ume input while retaining most pre-training parameters.

Despite these advancements, developing robust models for multi-organ seg-
mentation remains challenging, with two critical obstacles yet to be addressed:

1. Nuanced Relationships Between Organs. A major challenge in multi-organ
segmentation stems from the fact that certain organs have both shared and
unique structural and textural features, due to their shared embryonic ori-
gins and subsequent divergence in development. For example, the liver and
pancreas, both from the endoderm, share glandular traits but differ in tex-
tural characteristics. This variability complicates segmentation, as a single
set of parameters struggles to generalize effectively across organs. Explicitly
modelling organ relationships is crucial for capturing robust features.

2. Distinctive Morphological Characteristics. Multi-organ segmentation is in-
herently challenging due to the substantial variations in organ morphology,
size, and structural complexity. These differences make it particularly diffi-
cult to accurately identify and delineate individual organs, especially smaller
structures such as the adrenal glands. Furthermore, the anatomical proxim-
ity of abdominal organs complicates segmentation, often resulting in blurred
boundaries, organ overlaps, or missed structures. For example, distinguish-
ing the gallbladder from the liver remains a persistent challenge due to their
adjacent positioning and similar tissue characteristics.

Contribution. To tackle these challenges, this paper proposes OG-SAM (Organo-
genesis SAM), a novel adaptation paradigm that introduces organ development
modelling as a biological prior to enhance the accuracy and robustness of SAM
for multi-organ segmentation. It is established in developmental biology that
organs arise from common germ layers (ectoderm, mesoderm, and endoderm)
and follow divergent developmental pathways. This hierarchical organogenesis
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informs our design of a hierarchical branching adaptation architecture in our
proposed OrganAdapt (Organ Adaptation), where earlier layers capture fun-
damental structural features shared across multiple organs, while later layers
gradually refine these representations to organ-specific features.

To address organ size variability, we propose GoF (Generalized Organ-feature
Fusion) module, which extracts a feature pyramid from different layers of the
segmentation model, aggregating features at multiple levels of abstraction adap-
tively. By leveraging a hierarchical representation, GoF allows organs of different
sizes to selectively utilize relevant feature levels. It incorporates organ-specific
parameters, enabling dynamic adaptation that optimizes feature fusion from dif-
ferent layers based on organ characteristics. Our contributions include:
– The key component of OG-SAM, OrganAdapt, is inspired by embryonic de-

velopment and regulates parameter sharing and specialization among organs.
By aligning model adaptation with organ development pathways, it dynam-
ically adjusts shared and organ-specific representations, ensuring anatomi-
cally coherent segmentation with enhanced accuracy and robustness.

– The GoF module extracts a multi-scale feature pyramid from different layers
of the segmentation model. Using an organ-specific parameter p, it adap-
tively fuse features based on each organ’s unique structure and morphology.

– We formulate OG-SAM, as a query-based plug-in, seamlessly integrating
with SAM, where the organ class serves as a query to dynamically adjust
parameters for each organ following a unique trajectory. This enables a gated
adaptation mechanism, allowing the model to effectively function as a spe-
cialized model with enhanced performance, particularly for challenging cases.

2 Methodology

2.1 Preliminaries: SAM with Parameter-Efficient Adaptation

The SAM is a foundational vision model for general-purpose segmentation based
on a given prompt. For adaptation, we utilize SAM’s image encoder, a ViT-B
architecture [5] with 14 × 14 windowed attention and four evenly distributed
global attention blocks. We also employ SAM’s mask decoder, consisting of a
modified transformer decoder block followed by a dynamic mask prediction head.
Given an input image I, SAM generates a segmentation mask M , defined as:

M = dδ(fθ(I)), (1)

where fθ and dδ represent the image encoding and decoding functions, respec-
tively, both parameterized by deep neural network weights θ and δ.

Training large-scale vision models from scratch incurs substantial computa-
tional costs. To improve efficiency, Parameter-Efficient Adaptation (PEA) meth-
ods, such as Low-Rank Adaptation (LoRA) [10] and Adapters [9] , are commonly
employed. LoRA constrains the weight update ∆θ to a low-rank decomposition:

∆θ = ABT , A ∈ Rd×r, B ∈ Rd×r, (2)
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Fig. 1: Overview of OG-SAM. (A) Illustration of the organogenesis development
stages and organ specialization. (B) A weight-sharing graph designed based on
(A), specifying the shared weights among organs at different layers. (C) Gener-
alized fusion mechanism incorporating a learnable parameter p to hierarchically
integrate features based on a given organ query. (D) Adaptation of the SAM
framework using OrganAdapt, where the organ query first determines the shared
weights, which are subsequently applied to the adaptation modules.

where r ≪ d, ensuring a reduction in the parameter space while maintaining
expressive capacity. In contrast, Adapters modify the model output from h to
h′ rather than altering its primary weight parameters, achieved by introducing
a learnable bottleneck structure:

h′ = h+H(h) = h+Wup(σ(Wdownh)), (3)

where H(h) consists of a sequence of operations: a down-projection Wdown ∈
Rd×r, a non-linearity σ(·) (e.g., GELU [8]), and an up-projection Wup ∈ Rr×d.

For model adaptation, given the initial parameters θ0 of a particular layer i
in SAM, the adaptation process is formulated as:

hi+1 = f i
Θ(hi +H(hi)), where Θ = θ0 +ABT (4)

where maintaining a small rank r allows PEA to significantly reduce memory
overhead while enabling SAM to efficiently specialize in new segmentation tasks.

2.2 Overview of Organogenesis SAM

As shown in Figure 1, OG-SAM is structured into two modules: Organ Adapta-
tion (OrganAdapt) (§2.3) and Generalized Organ-feature Fusion (GoF) (§2.4).
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Our approach follows a query-based paradigm, where each query encodes the
interest in specific organs or their absence.

2.3 Organ Adaptation

Figure 1A presents the hierarchical development of organs where an embryo un-
dergoes sequential partitioning, gradually developing into distinct organs. Anal-
ogous to this process, our weight-sharing graph (Figure 1B) follows a progressive
approach. At the initial stage, all organs share a common set of weights, which
gradually diverge, forming specialized clusters until each organ acquires its own
distinct set of weights, ultimately enabling independent functionality.

Our Organ Adaptation (Figure 1D) consists of three key components, each
split by additive operations: the Split-Adapter, Low-Rank Factors, and a MLP.
The Organ Adaptation begins with an Organ Query, a binary indicator specifying
the organs of interest within the corresponding input 3D volume. This query is
first processed through Weight-Sharing Graph, which dynamically determines
the weight Wup and B based on both the depth of the current block and the
organ types. At each layer, a given input feature h is first processed by Split-
Adapter, which applies a downscaling MLP before partitioning the feature into
two distinct convolutional branches, followed by a dot-product computation. The
resulting representations are projected through an upsampling MLP:

ha = Wup

(
σ(Conv1(h̃))⊙ σ(Conv2(h̃))

)
+ h, where h̃ = WdownN(h), (5)

where the N(·) represent the Norm module. Subsequently, the transformed fea-
ture ha is fed into the Low-Rank Factors module, where the Key (K) and Value
(V ) representations are learned through a Low-rank factors before passing it
into a multi-head self-attention mechanism. The Query (Q) is separately ob-
tained through another MLP with weight Wq.

Q = Wq(N(ha)), [K,V ] = BA(N(ha)), (6)

where the weight matrix B expands the channel dimension to twice that of the
Q before being evenly split into the K and V . The Q, K, and V are then fed into
the multi-head self-attention mechanism to compute the feature for next step.

Finally, the output undergoes a nonormalizationrm layer followed by an MLP
transformation. Notably, while the normalization layer originates from the pre-
trained network and is typically frozen, our experiments demonstrate that mak-
ing it learnable enhances adaptability.

2.4 Generalized Organ-feature Fusion

Existing segmentation models are challenged by the significant variability in
organ size and shape, leading to misdetections and blurred boundaries. A unified
feature utilization decoder may not address the heterogeneity of organs and their
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scale variations. Therefore, we propose Generalized Organ-feature Fusion within
the Decoder (Figure 1C) to extract feature outputs from each block. Given an
Organ Query Qo, we first compute a soft attention scoring each feature:

S = W2(σ(W1Qo)), (7)

where W1 and W2 are the weight matrices of two MLP layers, and S represents
the computed attention scores. Subsequently, a weighted aggregation operation
is applied, followed by a feature-wise generalized mean pooling [28] to fuse the
feature representations into one:

f ′ = (G)
1
p , where G = (

∑
i

(Sifi)
p
)/(

∑
i

Si), (8)

where fi is the feature at layer i, and p is a learnable parameter. Then the output
fused feature f ′ will go through the segmentation head to predict the mask.

3 Experiments and Results

3.1 Setup and Implementation

The BTCV Challenge dataset [14], is a widely used multi-organ segmentation
benchmark in abdominal CT scans. It contains a total of 30 CT volumes, with 13
abdominal organs manually annotated. We only include parenchymatous organs
and remove blood vessels due to the focus on modelling organ structure and
texture. Each CT scan contains 85 to 198 slices. Slice thickness ranges from
2.5-5.0 mm. All scans are 512 × 512 pixels. In-plane resolution ranges from
0.54× 0.54 mm2 to 0.98× 0.98 mm2 .
Metrics: To assess model performance, we use two metrics: Dice Similarity Co-
efficient (Dice) and 95% Hausdorff Distance (HD95). The Dice measures the
overlap between the predicted mask and the ground truth, with a higher score
indicating a higher accuracy. Meanwhile, HD95 evaluates the maximum discrep-
ancy between the predicted and actual boundaries within the 95th percentile.
Implementation: We implemented models in PyTorch [20] and MONAI [1]
frameworks. All experiments and comparisons are based on the SAM-B model,
using ViT-B [5] as the backbone of the image encoder. The model was trained on
NVIDIA A6000 GPU using AdamW optimizer [18] and equipped with a linear
scheduler for 200 epochs of training.

3.2 Model Comparisons

We extensively compared our method with existing 3D medical segmentation
models, including CNN-based, Transformer-based, and SAM-based fine-tuning
methods, i.e., nnU-net, UNETR, swinUNETR, nnFormer, UX-net, SAM-Adapter,
LoRaMedNet, and 3DSAM-adapter (Table 1). The results show that our method
achieves the highest average performance in multi-organ segmentation, outper-
forming the best competing model by at least 1.0% in Dice score (UX-net) and
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Table 1: Comparison of quantitative results on the BTCV dataset.
Dice [%] ↑ Spleen R.Kd L.Kd GB Eso. Liver Sto. Pan. AG Avg

nnU-Net[12] 88.1 93.0 94.0 73.4 89.1 79.8 90.2 73.0 69.7 83.3
UNETR[25] 93.3 91.5 92.2 68.8 95.5 83.3 90.2 65.8 55.3 81.7
SwinUNETR[7] 93.5 92.9 92.6 64.6 96.1 87.0 91.3 75.3 66.1 84.3
nnFormer[30] 95.0 93.1 92.9 72.1 96.1 84.1 89.9 69.2 63.1 83.9
UX-net[15] 95.2 92.9 93.3 64.4 96.1 84.9 91.6 77.4 64.8 84.5
Sam-Adapter[4] 85.9 83.5 83.2 55.7 91.4 76.3 83.7 51.2 40.1 72.3
LoRaMedNet[16] 78.8 65.8 79.9 56.0 78.4 44.6 74.1 46.3 35.6 62.2
3DSAM-adapter[6] 92.4 90.5 90.8 67.2 95.1 86.3 89.6 55.9 55.6 80.4

OG-SAM(Ours) 94.4 93.2 92.6 80.1 96.1 88.9 82.7 70.9 70.3 85.5

HD95 ↓ Spleen R.Kd L.Kd GB Eso. Liver Sto. Pan. AG Avg.

nnU-Net[12] 1.94 1.54 1.47 7.39 52.23 7.07 1.99 1.66 3.91 8.80
UNETR[25] 2.23 2.23 2.00 10.44 2.44 9.05 1.41 3.00 4.47 4.14
SwinUNETR[7] 2.00 2.23 2.00 8.72 2.23 10.24 3.00 1.73 3.00 3.91
nnFormer[30] 46.01 3.03 3.93 17.32 62.58 25.33 25.82 3.60 11.70 22.14
UX-net[15] 1.41 2.00 1.73 9.48 2.44 10.44 1.00 1.73 120.53 16.75
SAM-Adapter[4] 2.00 86.26 20.33 6.08 3.74 128.88 1.41 2.23 118.00 40.99
LoRaMedNet[16] 105.66 177.87 132.31 7.49 135.69 163.51 154.03 140.66 6.70 113.77
3DSAM-adapter[6] 2.23 70.89 5.00 8.06 2.82 16.40 1.41 3.16 140.20 27.80

OG-SAM(Ours) 1.41 3.16 3.60 3.00 2.23 4.00 3.60 2.23 3.00 2.91

R.Kd: Right kidney, L.Kd: Left kidney, GB: Gall bladder, Eso.: Esophagus, Sto: Stomach, Pan: Pancreas, AG: Adrenal
gland.

reduces the HD95 score (SwinUNETR) by 1.00, suggesting our balanced model
performance due to our GOF module that aggregates features at multiple levels,
maintaining anatomical consistency.

Fig. 2: Qualitative segmentation visualization on the BTCV dataset.

Further, our method also surpasses competing methods in achieving the best
performance in more organs, measured by both Dice and HD95 scores, demon-
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Table 2: Ablation studies on the different components
Dice [%] ↑ Spleen R.Kd L.Kd GB Eso. Liver Sto. Pan. AG Avg

w/o GoF 93.4 92.8 92.8 77.0 95.8 88.7 90.6 68.1 66.0 85.0
w/o Weight-sharing 87.0 92.1 92.1 81.1 94.1 88.2 89.0 71.7 66.2 84.6
w/o Split-adapter 84.4 86.6 91.0 74.5 93.5 80.1 81.6 68.1 63.1 80.3
Ours 94.4 93.2 92.6 80.1 96.1 88.9 82.7 70.9 70.3 85.5

HD95 ↓ Spleen R.Kd L.Kd GB Eso. Liver Sto. Pan. AG Avg.

w/o GoF 2.00 2.44 2.44 3.31 2.23 4.69 1.41 3.14 5.19 2.98
w/o Weight-sharing 91.86 22.09 114.28 7.56 134.31 129.81 1.41 2.00 5.00 56.48
w/o Split-adapter 111.62 113.58 60.88 6.16 85.47 132.13 166.76 2.23 5.83 76.07
Ours 1.41 3.16 3.60 3.00 2.23 4.00 3.60 2.23 3.00 2.91

strating its balanced performance across diverse anatomical structures. Of note,
our model performs the best in gallbladder and liver segmentation, consistently
achieving the highest Dice and HD95 scores, suggesting our model could separate
anatomically adjacent structures through the weight-sharing strategy. As SAM is
trained on natural images, medical images with complex tissue structures, with
noise and artefacts, make SAN less effective for organs with blurred boundaries
and low contrast. Compared with these SAM-based methods, our method has
better boundary segmentation performance, indicated by our low HD95 scores
in Table 1. The visual comparison of all models is shown in Figure 2.

3.3 Ablation studies

To further explore the effectiveness of each component: (1) GoF; (2) Weight-
sharing; (3) Split-adapter, we ablate them and compare the model overall per-
formance. The experimental results in Table 2 show the performance decreases
after the ablation, demonstrating the effectiveness of each proposed module. No-
tably, the model performance improves with a 73.16 increase in HD95 when the
Organ Adaptor is ablated, compared to the GoF and Weight-sharing modules,
suggesting the effectiveness of our Adaptor.

4 Conclusion

We introduce OG-SAM, a biologically inspired multi-organ segmentation frame-
work, with OrganAdapt inspired by embryonic development, regulating parame-
ter sharing and specialization among multiple organs, ensuring anatomically co-
herent segmentation with enhanced accuracy and robustness. The GoF module
extracts multiscale feature pyramids from different layers and adaptively fuses
features using organ-specific parameters, capturing organ-unique features. As a
query-based plug-in, OG-SAM dynamically adjusts parameters for each organ,
enabling a gated adaptation mechanism to enhance model performance. Our
experiments show that our method surpasses competing methods and demon-
strates its ability to dynamically adapt to the unique features of organs while
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maintaining robustness across organs. Further, unlike conventional methods that
require full retraining for new organs, our approach is inherently scalable and
efficient, leveraging shared parameters to transfer knowledge across organs of
common origin and development. Our model offers a new perspective on biolog-
ically inspired adaptation.
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