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Abstract

AI for tumor segmentation is limited by the lack of large,
voxel-wise annotated datasets, which are hard to create and
require medical experts. In our proprietary JHH dataset
of 3,000 annotated pancreatic tumor scans, we found that
AI performance stopped improving after 1,500 scans. With
synthetic data, we reached the same performance using only
500 real scans. This finding suggests that synthetic data can
steepen data scaling laws, enabling more efficient model
training than real data alone.

Motivated by these lessons, we created AbdomenAtlas
2.0—a dataset of 10,134 CT scans with a total of 13,223
tumor instances per-voxel manually annotated in six or-
gans (pancreas, liver, kidney, colon, esophagus, and uterus)
and 6,511 control scans. Annotated by 23 expert radiol-
ogists, it is several orders of magnitude larger than ex-
isting public tumor datasets. While we continue expand-
ing the dataset, the current version of AbdomenAtlas 2.0
already provides a strong foundation—based on lessons
from the JHH dataset—for training AI to segment tumors
in six organs. It achieves notable improvements over public
datasets, with a +7% DSC gain on in-distribution tests and
+16% on out-of-distribution tests.

1. Introduction
Developing AI models for tumor segmentation is funda-
mentally challenged by the scarcity of large, annotated
datasets—owing to the immense time and expertise re-
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Figure 1. Data scaling laws study. Experimental results on the
proprietary dataset demonstrate that increasing the scale of real
data improve the segmentation (gray curve). Notably, supplement-
ing the dataset with an additional 3× synthetic data (red curve) can
further enhance the results, revealing the potential of a larger pub-
lic dataset to advance tumor research.

quired for per-voxel annotation [64, 95, 98]. Inspired by
scaling laws [17, 46, 72, 79], to estimate the impact of data
scale on tumor segmentation performance, we first lever-
aged a proprietary dataset of 3,000 pancreatic tumor scans,
per-voxel annotated over five years by expert radiologists
and verified by pathology reports. According to our prelimi-
nary publications (anonymous for blind review), this dataset
enabled AI to achieve detection performance on par with
expert radiologists. As shown in Figure 1, Our analysis re-
vealed that beyond 1,500 scans, AI performance plateaus
despite additional data. Recognizing that annotating 1,500
scans is still a considerable undertaking for a single tumor
type, we explored the potential of synthetic data [9, 10, 36–
38, 51, 53, 57, 67] to further advance this plateau. By in-
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Figure 2. Overview of the AbdomenAtlas 2.0 dataset. For each CT scan, AbdomenAtlas 2.0 provides precise and high-quality
annotations following a well-designed AI-driven annotation pipeline. Compared to existing datasets, AbdomenAtlas 2.0 collects large-
scale CT volumes from diverse clinical sources, encompassing a wide range of tumor types (i.e., liver, pancreas, kidney, colon, esophageal,
and uterine tumors) and comprehensive tumor sizes. This extensive scale makes it the largest human-annotated tumor mask dataset.

corporating synthetically generated tumors (3× the real tu-
mors) into the training data, we demonstrated that AI mod-
els could achieve comparable or superior performance using
only 500 real scans—a significant reduction in the need for
labor-intensive manual annotations. This finding indicates
that synthetic augmentation effectively steepens the slope
of the scaling laws, enhancing model performance more ef-
ficiently than scaling real data alone.

The lesson on the proprietary dataset offers a practical
estimation of the required number of annotated tumor scans
to develop effective AI models, e.g., comparable to radi-
ologist performance. Considering that pancreatic tumors
are particularly challenging to detect on CT scans, with
80% detected only at late stages [34], we hypothesize that
if 1,500 real scans—or 500 with synthetic data—can train
effective AI for pancreatic tumors, similar or fewer scans
could be a good starting point for other organs. Therefore,
we apply this estimation to six types of tumors: pancreas,
liver, kidney, colon, esophagus, and uterus. To test this es-
timation, our first contribution is to create a dataset com-
prising approximately 500–1,500 per-voxel annotated CT
scans for tumors in each organ. Notably, this is the first pub-
lic dataset that offers per-voxel annotations for esophageal
and uterine tumors. We name this six-tumor dataset Ab-
domenAtlas 2.0, which comprises 3,623 CT scans with
per-voxel annotations of 13,223 benign/malignant tumor in-
stances and 6,511 normal scans as control (§3). Importantly,
AbdomenAtlas 2.0 features 5,709, 850, 3,548, 29, 17, and
39 early-stage lesions (less than 20 mm) in the liver, pan-
creas, kidney, colon, esophagus, and uterus, respectively—
rare and challenging to collect.

While our AbdomenAtlas 2.0 is much larger than pre-
existing tumor datasets, combined [4, 31, 64], we acknowl-
edge that 500–1,500 scans per tumor type remain insuffi-
cient for robust AI across varied data distributions. It is
because the performance plateau in our data-scaling lesson
(Figure 1) was limited to in-distribution test. For out-of-
distribution, i.e., testing AI on CT images taken from dif-
ferent centers, AI performance continues improving from
1,500 to 3,000 scans, suggesting that ideally, training should
include as many diverse scans as possible. However, scaling
data for out-of-distribution test will be prohibitively expen-
sive; in our study, annotating 500–1,500 scans per tumor
type took 23 radiologists several months to complete. De-
termining which CT scans to annotate for the greatest ben-
efit is also difficult, as out-of-distribution test data is apriori
unknown.

To address this, our second contribution is to scale
data and annotations through DiffTumor to produce differ-
ent types of tumors (Figure 5). The data-scaling analysis
(Figure 1) suggested that training AI on synthetic tumors
can significantly enhances in-distribution test performance.
More importantly, since collecting normal scans is much
easier than acquiring and annotating tumor scans, synthetic
tumors can be added to normal scans from a range of out-
of-distribution sources, bypassing the need for manual per-
voxel annotation. These synthetic tumors are automatically
paired with per-voxel annotations as they are generated with
their masks. Training AI on these normal scans augmented
by synthetic tumors can greatly improve performance in
out-of-distribution tests (Figure 7).

In summary, we bring data-scaling lessons from both real



Dataset release # volumes # slices (K) # tumors tumor in # # hospitals # countries‡ annotators

LiTS [4] [link] 2019 131 58.6 853 liver 7 E, NL, CA, FR, IL human
MSD-Colon [2] [link] 2021 126 13.5 131 colon 1 US human & AI
MSD-Pancreas [2] [link] 2021 281 26.7 283 pancreas 1 US human & AI
FLARE23 [2] [link] 2022 2,200 629.1 1,511 unknown† 30 N/A human & AI
KiTS [32] [link] 2023 489 250.9 568 kidney 1 US human
ULS-Liver [15] [link] 2023 49 6.3 49 liver 1 - human
ULS-Pancreas [15] [link] 2023 120 15.4 120 pancreas 1 NI human
ULS-Kidney [15] [link] 2023 50 6.4 50 kidney 1 N/A human

AbdomenAtlas 2.0 (ours) 2025 10,134 4,700 13,223

liver,
pancreas,
kidneys,
colon,

esophagus,
uterus

89
MT, IE, BR, BA, AUS,
TH, CA, TR, CL, ES,

MA, US, DE, NL, FR, IL, CN
human

† Tumors labeled in the FLARE23 dataset fall under a general ’Tumor’ category without specific tumor type information.
‡ US: United States, DE: Germany, NL: Netherlands, CA: Canada, FR: France, IL: Israel, IE: Ireland, BR: Brazil, BA: Bosnia and Herzegowina, CN: China, TR: Turkey, CH:

Switzerland, AUS: Australia, TH: Thailand, CL: Chile, ES: Spain, MA: Morocco, and MT: Malta.

Table 1. Dataset comparison. We compare AbdomenAtlas 2.0 against existing abdominal tumor segmentation datasets, including those
with and without tumor labels. AbdomenAtlas 2.0 outperforms these datasets in terms of scale and diversity.

and synthetic data on a large proprietary dataset to develop
AbdomenAtlas 2.0, achieving two key advancements for
six-tumor segmentation, specifically,

1. Scaling real and synthetic data enhances performance
in abdominal tumor segmentation. We rank first in the
MSD challenge, leading to substantial performance im-
provement. We also achieve the highest performance on
the validation sets of our AbdomenAtlas 2.0 dataset,
improving DSC scores by +5%, +9%, +3%, +4%, +7%,
and +2% for segmenting tumors in the liver, pancreas,
kidney, colon, esophagus, and uterus, respectively, com-
pared to the runner-up algorithms (§3.3, Tables 2–3).

2. Scaling real and synthetic data enhances generalizable
performance in abdominal tumor segmentation without
additional tuning and adaptation. AbdomenAtlas 2.0
significantly outperforms the runner-up algorithms by
+14% DSC on four external datasets (§3.3, Table 4).

2. Related Work

Large-scale Annotated Tumor Datasets are scarce due
to the limited availability of scan data and the substan-
tial costs of obtaining per-voxel annotations. Despite these
hurdles, datasets such as DeepLesion [92], AutoPET [20],
PANORAMA [1], FLARE [64], and MSD [3] serve as sig-
nificant efforts to mitigate this limitation. A detailed com-
parison of related datasets is provided in Figure 1. Abdom-
enAtlas 2.0 comprises more than 10,000 CT scans with
voxel-level annotations across six abdominal tumors. No-
tably, AbdomenAtlas 2.0 features esophageal and uterine
tumor scans, which have not been previously available in
public datasets.

Neural Scaling Laws establish the power-law relationships
that correlate model performance with key scaling factors
such as model size, dataset volume, and computational re-

sources. It is initially discovered within the domain of lan-
guage models highlighted by Kaplan et al. [46], and soon
also been observed in generative visual modeling [33, 74]
and multi-modality modeling [43]. This trend of scaling
underpins the recent achievements of foundation models
[72, 79], emphasizing how scaling up systematically boosts
model generalization and effectiveness across various tasks.
However, for tumor analysis and synthetic data, scaling
laws remain underexplored due to the limited availability
of annotated tumor data. Leveraging our new, large-scale
tumor dataset, we investigate whether similar data scaling
laws exist in tumor segmentation and whether appropriate
data scaling can yield a robust segmentation model capa-
ble of generalizing to detect and segment tumors from CT
volumes, encompassing a broad spectrum of patient demo-
graphics, imaging protocols, and healthcare facilities.

3. AbdomenAtlas 2.0

3.1. Dataset Construction
Accurate annotations are the foundation of high-quality
medical datasets. However, conventional per-voxel label-
ing is labor-intensive. Obtaining each scan data typically
costs 4–5 minutes, while extensive tumors may take up to
40 minutes [5, 64]. In addition, precisely delineating tu-
mor boundaries takes substantial time and requires the spe-
cialized expertise of highly trained radiologists, making it
impractical to scale annotations to datasets with 10,000 or
more scans. To address this bottleneck, we establish a semi-
automated annotation pipeline for CT volumes that signifi-
cantly reduces the manual workload and requires only min-
imal revision time from radiologists.

SMART-Annotator Procedure. We observe that seg-
menting missed-detection tumors is considerably more
time-consuming than eliminating false-positive detections.

https://competitions.codalab.org/competitions/17094
https://decathlon-10.grand-challenge.org/
https://decathlon-10.grand-challenge.org/
https://codalab.lisn.upsaclay.fr/competitions/12239
https://kits-challenge.org/kits23/
https://uls23.grand-challenge.org/
https://uls23.grand-challenge.org/
https://uls23.grand-challenge.org/


Figure 3. Overview of the SMART-Annotator. Towards annotating a large-scale tumor dataset, developing our SMART-Annotator
involves four stages. ① Train a Segmentation Model using public datasets to provide tumor segmentation logits across AbdomenAtlas
2.0. ② Analyzing the FROC curve and selecting a threshold that enhances sensitivity to minimize missed tumors while maintaining an
acceptable specificity score. ③ Removing false positives for the adjusted predictions by senior radiologists. ④ Revising the final annotations
to get ground truth by junior radiologists.

Therefore, our annotation pipeline is designed to priori-
tize minimizing under-segmentation errors, thereby reduc-
ing the typical annotation time from 5 minutes per scan to
less than 5 seconds on average, while maintaining high ac-
curacy. The proposed pipeline, named SMART-Annotator,
stands for Segmentation Model-Assisted Rapid Tumor An-
notator. As depicted in Figure 3, it consists of the following
four key stages:

1. Model Preparation. For each tumor, we separately train
a Segmentation Model (denoted as f(·)) using publicly
available datasets. The tumor-specific f(·) is optimized
for tumor segmentation and detection tasks.

2. FROC Curve Analysis. To determine the optimal
threshold, we construct the Free-response ROC (FROC)
Curve by equipping f(·, θ) with a set of threshold values
θ, obtaining the trade-off map (as shown by the purple
shadow region in Figure 3) between sensitivity and false
positive rate. Experimental results on tumor analysis in
CT scans reveal that a lower θ∗ maximizes sensitivity
while maintaining an acceptable false positive rate.

3. Tumor Candidate Generation. For CT scans requiring
annotation, we apply the tumor-specific model f(·, θ∗)
to perform voxel-wise analysis. This process gener-
ates preliminary tumor segmentation candidates, while
identifying potential tumor regions that need further re-
finement and validation. Since these potential regions

are typically challenging, senior radiologists are then re-
quired to conduct a review to confirm true positives and
eliminate false positive cases.

4. Annotation Revision. The reviewed tumor segmenta-
tion candidates undergo further refinement by junior ra-
diologists, who annotate missed tumors and adjust mask
boundaries to ensure accurate and precise tumor anno-
tations. The final revised annotations are thoroughly re-
viewed by senior radiologists to guarantee high-quality
ground truth.

Annotation Accuracy Analysis. For each specific organ,
our pipeline adaptively adjusts the threshold θ∗ based on
the FROC curve to ensure over 90% sensitivity. A common
concern is whether such high sensitivity might result in a
significant number of false positive cases? To answer this,
we validate SMART-Annotator on three public datasets and
reveal that the pipeline maintains manageable false-positive
rates, with an average of 1.2 false positives per scan for
pancreatic tumors, 2 for liver tumors, and 2.4 for kidney
tumors. These results highlight the effectiveness of our AI-
driven approach in tumor detection. By pre-identifying tu-
mors with pseudo-annotations, radiologists can quickly ver-
ify true positives, correct false positives, and, if necessary,
provide additional annotations for false negatives, thereby
efficiently annotating tumor scans in AbdomenAtlas 2.0.

Annotation Efficiency Analysis. The AbdomenAtlas 2.0



Figure 4. Dataset statistics analysis on the distributions of (a)
different tumor proportions, (b) tumor radius, and (c) different tu-
mor sizes categorized as tiny, small, medium, and large.

incorporates proprietary esophagus and uterus scans along-
side unannotated data from 12 publicly available sources.
Our approach applies the SMART-Annotator pipeline to all
scans. Given that full manual annotation typically requires
5 minutes per scan, whereas annotation with SMART-
Annotator takes only 5 seconds, this AI-driven approach
substantially alleviates the annotation workload, conserv-
ing approximately 10,134 ×

(
5− 1

12

)
≈ 49, 826 minutes

of valuable radiologist time for annotating the entire Ab-
domenAtlas 2.0 collection. Assuming a radiologist works
10 hours per day, this corresponds to 83 workdays saved.

3.2. Dataset Statistical Analysis
AbdomenAtlas 2.0 represents the largest publicly avail-
able human-annotated tumor mask dataset encompassing
six distinct tumor types (Figure 2). It surpasses existing
datasets in several key aspects:
1. Large-scale CT Volumes. AbdomenAtlas 2.0 com-

prises 10,136 fully annotated CT scans, encompassing
over 4.7 million CT slices. It includes annotations for 31
distinct anatomical structures, covering 25 major organs
and six diverse tumor types. Sourced from 89 different
hospitals, AbdomenAtlas 2.0 ensures a wide range of
patient demographics and clinical scenarios.

2. Diverse Tumor Type Coverage. While most public
datasets focus on a specific tumor type (see Table 1),
AbdomenAtlas 2.0 includes six distinct tumor types,
including liver, pancreas, kidney, colon, esophageal, and
uterine tumors. Notably, annotations for esophageal and
uterine tumors are rarely found in existing publicly avail-

able datasets, while AbdomenAtlas 2.0 provides de-
tailed annotations for these tumor types. The distribution
of tumor scans across different categories in Abdome-
nAtlas 2.0 is illustrated in Figure 4(a). By addressing
this crucial gap, AbdomenAtlas 2.0 serves as a valu-
able resource for advancing multi-tumor analysis, espe-
cially for rare and underrepresented tumor types.

3. Comprehensive Tumor Size Distribution. Abdome-
nAtlas 2.0 provides a diverse and well-balanced tumor
size distribution, ranging from 0 to 100 mm. The tumor
size distribution across different categories in Abdom-
enAtlas 2.0 is illustrated in Figure 4 (b). As shown,
AbdomenAtlas 2.0 effectively covers a wide range of
tumor sizes across these six tumor types. Specifically,
we classify tumors based on their radius r into four cat-
egories: tiny (r ≤ 5mm), small ( 5mm ≤ r ≤ 10mm),
medium (10mm ≤ r ≤ 20mm), large (r ≥ 20mm).
The proportion of tumors in each category is illustrated
in Figure 4 (c). This characteristic of AbdomenAtlas
2.0 establishes it as a representative dataset for support-
ing robust and generalizable tumor analysis across all tu-
mor sizes.

4. Abundant Tumor Annotations. AbdomenAtlas 2.0
collects a total of 10,260 meticulously annotated tumor
masks, covering six distinct tumor types and comprehen-
sive size distributions, thereby significantly surpassing
existing datasets (e.g., LiTS and KiTS) from both dataset
size and tumor variety (see Figure 2(b), Table 1).

5. High-Quality Annotations. Our annotation pipeline
adopts a multi-stage review process (see Figure 3), inte-
grating AI algorithms with human expertise to enhance
efficiency while maintaining high annotation quality. All
images and annotations undergo rigorous quality con-
trol. This process iteratively refined the annotations until
no further major revisions were necessary.

3.3. Advantages of AbdomenAtlas 2.0

Strong performance on in-distribution data. We report
detailed comparisons on the official test set of the Medical
Segmentation Decathlon (MSD) leaderboard in Table 2. As
can be seen, with AbdomenAtlas 2.0, we significantly sur-
pass the previously leading Universal Model [60] (denoted
as Uni. Model in Table 2) and achieve the top #1 perfor-
mance on the leaderboard, underscoring the superiority of
AbdomenAtlas 2.0 in the task of medical segmentation.

To comprehensively evaluate the six tumor types in Ab-
domenAtlas 2.0, we train ResEncM [41] with the anno-
tated tumor data in AbdomenAtlas 2.0 and compare with
state-of-the-art segmentation models in the medical field
(i.e., UNETR [28], Swin UNETR [86], nnU-Net [40], Res-
EncM [41] and STU-Net-B [39]) that are trained with pub-
licly available tumor datasets. The evaluations are con-
ducted on the validation set of AbdomenAtlas 2.0 and re-



Task03 Liver Task07 Pancreas

Method DSC NSD DSC NSD

Kim et al. [49] 73.0 88.6 51.8 73.1
C2FNAS [94] 72.9 89.2 54.4 75.6
Trans VW [25] 76.9±20.0 92.0±16.8 51.1±32.8 70.1±37.4

Models Gen. [97] 77.5±20.4 91.9±17.9 50.4±32.6 70.0±37.2

nnU-Net [40] 76.0±22.1 90.7±18.3 52.8±33.0 71.5±36.6

DiNTS [29] 74.6±21.3 91.0±17.3 55.4±29.8 75.9±32.0

Swin UNETR [86] 75.7±20.4 91.6±16.8 58.2±28.6 79.1±29.7

Uni. Model [60] 79.4±17.0 93.4±15.2 62.3±26.6 82.9±27.2

AbdomenAtlas 2.0 82.6±11.0 96.9±6.4 67.2±24.7 86.0±25.2

∆ +3.2 +3.5 +4.9 +3.1

Table 2. Leaderboard performance on MSD Challenge. The
results are assessed on the MSD official server using the MSD
competition test dataset. All DSC and NSD metrics are sourced
from The MSD Leaderboard. The outcomes for the remaining
tasks were produced by Universal Model [60, 61].

ported in Table 3. As can be seen, training the ResEncM
with AbdomenAtlas 2.0 (denoted as AbdomenAtlas 2.0)
consistently improves the performance and outperforms the
state-of-the-art across all tumor segmentation tasks. Com-
pared with the second-ranked STU-Net-B, AbdomenAt-
las 2.0 archives a remarkable DSC improvement of 7.3%
on esophageal tumors and 4.9% on liver tumors, respec-
tively. These results demonstrate the superiority of Ab-
domenAtlas 2.0 in delivering high-quality tumor data for
model training compared to existing datasets, contributing
to alleviating the data scarcity issue in tumor segmentation.
Better generalization for out-of-distribution data. A crit-
ical requirement for medical AI models is their ability to
generalize across diverse, out-of-distribution (OOD) data
from multiple hospitals, rather than being optimized solely
for a single, in-distribution dataset. As shown in Table 1,
AbdomenAtlas 2.0 provides a considerably more diverse
collection of CT scans from 89 hospitals across 18 coun-
tries. To verify the generalizability offered by Abdome-
nAtlas 2.0, we further conduct evaluations on four external
datasets: 3D-IRCADb [84], PANORAMA [1], Kipa [30],
and a proprietary JHH dataset [90], none of which are
included in the training phase. We train ResEncM [41]
with the annotated tumor data in AbdomenAtlas 2.0 and
compare with the following state-of-the-art medical image
segmentation models: UNETR [28], Swin UNETR [86],
nnU-Net [40], ResEncM [41] and STU-Net [39], SegRes-
Net [70], Universal Model [60], and SuPrem [54]. As
shown in Table 4, our model significantly outperforms pre-
vious methods on all external datasets, achieving a notable
DSC improvement of 14.0% and an NSD improvement of
17.0% on the 3D-IRCADb dataset.

4. Scaling Laws in Tumor Segmentation
In this section, we explore the existence of data scaling laws
in tumor segmentation and assess whether appropriate data

Figure 5. Tumor size distribution and combined data distri-
bution of typical tumor types, where we combine synthetic tu-
mors with different scales of AbdomenAtlas 2.0 training set. To
demonstrate the tumor distribution in (b)-(d), we extract tumor re-
gion features with a pre-trained encoder [79] and visualize with
t-SNE maps.

scaling can yield a robust segmentation model. This seg-
mentation model should be generalizable to detect and seg-
ment tumors from CT volumes, handling a broad spectrum
of patient demographics, imaging protocols, and healthcare
facilities. Specifically, we first examine the impact of in-
creasing the number of annotated real-tumor scans on in-
distribution performance. Then we analyze how the scale
of annotated real-tumor data influences the model’s ability
to generalize to out-of-distribution tumor data.

4.1. Setup
We evaluate the scaling behavior with two data setups: (1)
only real-tumor scans, and (2) a combination of both syn-
thetic and real tumor scans. Since small tumors are rare
in public datasets but crucial for clinical applications, we
employ DiffTumor [9] to generate synthetic tumors, with a
ratio of 4:2:1 for small, medium, and large tumors, respec-
tively. The total number of synthetic tumor scans gener-
ated is three times of AbdomenAtlas 2.0. The distribu-
tion of tumor size and combined data distribution are illus-
trated in Figure 5, where we combine the generated tumors
with different scales of AbdomenAtlas 2.0 training set to
train the supervised ResEncM [41]. The evaluation is con-
ducted with segmentation metrics (i.e., DSC, NSD) and de-
tection metrics (i.e., tumor-level and patient level sensitiv-

https://decathlon-10.grand-challenge.org/evaluation/challenge/leaderboard/


Liver Tumor Pancreatic Tumor Kidney Tumor

Method Param Sen. DSC NSD Sen. DSC NSD Sen. DSC NSD

UNETR [28] 101.8M 77.1 (102/131) 55.6 53.7 66.7 (102/131) 31.1 27.2 95.8 (102/131) 67.2 55.7
Swin UNETR [86] 72.8M 76.6 (102/131) 66.8 68.4 81.5 (102/131) 44.7 43.8 95.8 (102/131) 72.3 67.7
nnU-Net [40] 31.1M 80.3 (102/131) 71.7 74.6 81.5 (102/131) 56.7 54.3 100 (102/131) 84.8 80.7
ResEncM [41] 63.1M 89.1 (102/131) 71.9 74.7 84.0 (102/131) 57.0 54.6 100 (102/131) 84.8 81.1
STU-Net-B [39] 58.3M 79.3 (102/131) 72.6 74.9 85.2 (102/131) 56.1 54.4 100 (102/131) 82.4 77.6

AbdomenAtlas 2.0 63.1M 83.7 (102/131) 77.5 81.0 96.0 (102/131) 65.8 64.7 100 (102/131) 87.9 84.4
∆ -5.4 +4.9 +6.1 +10.8 +8.8 +10.1 +0.0 +3.1 +3.3

Colon Tumor Esophagus Tumor Uterus Tumor

Method Param Sen. DSC NSD Sen. DSC NSD Sen. DSC NSD

UNETR [28] 101.8M 69.2 (102/131) 27.8 29.2 92.3 (102/131) 42.3 44.1 95.8 (102/131) 69.9 60.7
Swin UNETR [86] 72.8M 65.4 (102/131) 36.8 39.4 84.6 (102/131) 48.2 49.0 95.8 (102/131) 73.8 65.0
nnU-Net [40] 31.3M 65.4 (102/131) 42.8 43.7 92.3 (102/131) 52.7 53.2 95.8 (102/131) 78.5 70.2
ResEncM [41] 63.1M 65.4 (102/131) 43.8 45.9 84.6 (102/131) 53.3 51.9 95.8 (102/131) 78.7 68.4
STU-Net-B [39] 58.3M 73.1 (102/131) 47.1 48.7 88.5 (102/131) 53.9 54.1 95.8 (102/131) 78.2 68.8

AbdomenAtlas 2.0 63.1M 96.2 (102/131) 50.7 47.6 96.2 (102/131) 61.2 61.7 95.8 (102/131) 80.1 70.3
∆ +23.1 +3.6 -1.1 +3.9 +7.3 +7.6 +0.0 +1.4 +0.1

Table 3. Strong performance for in-distribution data: Results on AbdomenAtlas 2.0. We compare AbdomenAtlas 2.0 with common
AI algorithms, using the validation sets from the AbdomenAtlas 2.0. AbdomenAtlas 2.0 demonstrates superior tumor segmentation and
performance overall, showing significant improvements in segmenting liver tumors (+4.9%), pancreatic tumors (+8.8%), kidney tumors
(+3.1%), colon tumors (+3.6%), esophagus tumors (+7.3%), and uterus tumors (+1.4%).

3D-IRCADb [84] - Liver Tumor PANORAMA [1] - Pancreatic Tumor Kipa [30] - Kidney Tumor JHH - Pancreatic Tumor

Method Sen. DSC NSD Sen. DSC NSD Sen. DSC NSD Sen. DSC NSD

UNETR [28] 74.4 (87/117) 50.1 46.8 58.8 (77/131) 21.4 18.0 70.8 (51/72) 43.1 35.8 51.4 (152/296) 13.0 9.0
Swin UNETR [86] 76.9 (90/117) 57.9 53.7 69.5 (91/131) 34.0 30.9 81.9 (59/72) 64.3 56.6 71.3 (211/296) 31.9 21.9
nnU-Net [40] 77.8 (91/117) 65.1 62.2 75.6 (99/131) 42.4 38.6 80.6 (58/72) 64.3 58.9 69.9 (207/296) 34.1 24.7
ResEncM [41] 76.9 (90/117) 57.6 53.3 61.1 (80/131) 33.5 30.0 90.2 (65/72) 76.4 77.0 68.6 (203/296) 34.8 26.5
STU-Net [39] 78.6 (92/117) 67.1 64.5 74.0 (97/131) 42.7 40.3 55.6 (40/72) 71.2 70.4 68.9 (204/296) 34.1 24.7
SegResNet [70] 65.0 (76/117) 54.6 51.3 84.0 (110/131) 43.0 40.3 94.4 (68/72) 73.6 70.0 77.7 (211/296) 39.5 31.1
Universal Model [60] 86.3 (101/117) 62.8 57.4 77.9 (102/131) 37.0 33.9 97.2 (67/72) 47.8 37.1 78.4 (232/296) 32.6 27.1
SuPreM [54] 58.1 (68/117) 50.2 47.8 67.9 (89/131) 30.5 28.0 84.7 (61/72) 42.3 36.0 63.2 (187/296) 24.7 19.8

AbdomenAtlas 2.0 86.3 (101/117) 81.1 81.5 94.6 (124/131) 55.3 52.2 97.2 (70/72) 83.6 83.0 80.7 (239/296) 45.1 35.7
∆ +0.0 +14.0 +17.0 +10.6 +12.3 +11.9 +0.0 +7.2 +6.0 +2.3 +5.6 +4.6

Table 4. Better generalizability for out-of-distribution data: Results on external datasets. We evaluate AbdomenAtlas 2.0 and 8
other models on data from three publicly available and one private external source without additional fine-tuning or domain adaptation.
Compared to dataset-specific models, AbdomenAtlas 2.0 demonstrates greater robustness when handling CT scans obtained from a
variety of scanners, protocols, and institutes.

ity), using the validation set of AbdomenAtlas 2.0 and six
external datasets (3D-IRCADb, ULS-Liver, ULS-Pancreas,
PANORAMA, Kipa, and JHH dataset).

4.2. Plateau in In-Distribution Evaluation

We report the in-distribution segmentation performance in
Figure 6 and include the detection metrics in the Ap-
pendix E. Our analysis of tumor segmentation scaling be-
havior reveals a clear trend in in-distribution performance:
as the number of annotated real-tumor scans increases, the
in-distribution performance gains gradually saturate. As il-
lustrated by the gray lines in Figure 6, in-distribution perfor-
mance initially improves with increasing data but eventually
reaches a plateau across all three tumor types. This satu-
ration indicates diminishing returns that adding more real
tumor data yields progressively smaller performance gains.

However, combining a certain amount of synthetic tu-
mors with real data during training helps to accelerate this
in-distribution performance saturation process. As shown
by the red lines in Figure 6, with the participants of syn-
thetic data, the saturation status can be reached with only
40% to 60% of the annotated real-tumor scans, indicating
that synthetic data effectively expedite the model’s conver-
gence to its optimal performance within a given domain.

This finding highlights a practical strategy for achieving
near-optimal performance within a specific domain without
collecting extensive real data: by supplementing real tumor
data with well-designed synthetic data, we can significantly
reduce the effort required for real data acquisition, process-
ing, and annotation while maintaining strong in-distribution
segmentation accuracy. This lesson demonstrates the tan-
gible benefits of introducing synthetic data into the train-



Figure 6. Scaling data shows performance plateau in in-
distribution evaluation. We conduct a scaling study using Ab-
domenAtlas 2.0 and private datasets as real tumor data and eval-
uate performance on their corresponding validation sets. While
scaling up the dataset initially enhances in-distribution perfor-
mance, it eventually plateaus. These results align with the data-
scaling lesson in §1. By supplementing real tumor data with well-
designed synthetic data, we only need to collect and annotate a
small amount of real data. This approach is especially beneficial
for scenarios where data is scarce and annotation is costly, en-
abling high-accuracy segmentation with reduced effort.

ing process, and is particularly valuable for scenarios where
real-data acquisition is costly or limited.

4.3. Scaling Data Leads to Greater Generalizability

Figure 7 reports out-of-distribution (OOD) segmentation
performance. As indicated by the gray and red lines, OOD
accuracy consistently rises with the expanding dataset. The
impact of data scaling on out-of-distribution performance
follows a consistently positive trend: as the amount of real
tumor data increases, OOD performance continues to im-
prove without signs of saturation, even after exhausting the
entire Cancerverse dataset. We include more OOD results
in Appendix F. In contrast with the in-distribution perfor-
mance that tends to saturate with increasing data, the find-
ing on the out-of-distribution performance reveals that OOD
generalization continues to benefit from additional real tu-
mor data without exhibiting diminishing returns. Such a
non-diminishing trend is still obvious even when synthetic
data is incorporated into the training process. Furthermore,
models trained with both real and synthetic tumor scans
consistently outperform those trained with real data.

These findings underscore the critical role of data diver-
sity in enhancing OOD generalization, showing that a care-
fully curated combination of real/synthetic data strengthens
model robustness across diverse imaging settings.

Figure 7. Scaling data leads to greater generalizability. We
conduct a scaling study using liver, pancreatic, and kidney tumors
from the Cancerverse dataset as real tumor data and evaluate per-
formance on six external datasets. Unlike in-distribution perfor-
mance, which plateaus with more data, OOD generalization con-
tinues to improve with the addition of real tumor data. Notably,
the integration of synthetic data further improves generalizability,
with models trained on both real and synthetic scans consistently
outperforming those using only real data. These findings under-
score the critical importance of data diversity in enhancing model
robustness across diverse imaging conditions.

5. Conclusion
In this paper, we introduce AbdomenAtlas 2.0, the largest
human-annotated tumor mask dataset to date, which in-
cludes 6 tumor types and annotations for underrepresented
tumor types. By scaling data and annotations, we reveal
the following key lessons for data-driven tumor segmenta-
tion: large annotated datasets improve in-distribution per-
formance with a plateau occurring after reaching a specific
threshold (1,500 scans). Incorporating synthetic data ef-
fectively accelerates the converging, achieving comparable
performance with only 500 real scans and improving per-
formance in out-of-distribution data.
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Scaling Laws in Tumor Segmentation:
Best Lessons from Real and Synthetic Data

Supplementary Material

This appendix is organized as follows:
• § A provides comprehensive results with scaled real data with proprietary dataset and synthetic data.
• § B provides comprehensive related works.
◦ B.1: AI Development on Real Tumors
◦ B.2: AI Development on Synthetic Tumors

• § C provides implementation details for Tumor Genesis and comparative models.
◦ C.1: details of public and private datasets used in AbdomenAtlas 2.0.
◦ C.2: implementation details of comparative models

• § D provides more visual examples from AbdomenAtlas 2.0.
• § E presents additional results on the key insights gained from scaling real tumor data.
• § F presents additional results on the key insights gained from scaling real and synthetic tumor data.



A. Best Lesson Proof on proprietary dataset

Figure 8. Best lesson proof on proprietary dataset. Comprehensive experimental results trained on the proprietary dataset show that
increasing the scale of real data (gray curve) improves segmentation (DSC and NSD) and detection (patient-level sensitivity, tumor-level
sensitivity, and early tumor sensitivity) for both in-distribution and out-of-distribution data. Additionally, augmenting the dataset with an
extra 3× synthetic data (red curve) consistently enhances the results. The specific numerical results in this figure can be referenced in the
Table 5. Given the substantial GPU requirements, the results were obtained from a single experiment. To reach a more reliable conclusion,
we will conduct the experiments at least 10 times.



Scaling with real data.
#real CT Patient-level Sen. Tumor-level Sen. DSC NSD Early Tumor Sen.

Test on in-distribution data

60 86.4 74.3 40.2 35.0 45.7
120 90.1 79.4 51.0 44.4 40.0
278 91.5 82.4 52.7 47.2 51.4
435 90.1 80.7 54.4 48.6 42.9
750 89.7 80.1 55.4 49.1 41.4
1125 91.2 82.1 56.1 50.7 44.3
1500 90.4 82.1 59.3 53.6 48.6
3159 91.5 84.8 59.7 54.3 58.6

Test on out-of-distribution data

60 100.0 51.2 6.6 4.4 22.0
120 100.0 69.5 22.6 17.4 42.0
278 89.2 74.1 33.2 27.9 44.0
435 92.3 75.6 36.8 30.5 48.0
750 88.5 71.0 35.3 28.5 38.0
1125 80.0 72.5 37.1 31.4 48.0
1500 90.0 81.7 38.4 31.2 60.0
3159 81.5 74.1 41.2 35.5 46.0

Scaling with real & synthetic data.
#real CT Patient-level Sen. Tumor-level Sen. DSC NSD Early Tumor Sen.

Test on in-distribution data

60 89.7 77.4 48.2 39.8 40.0
120 94.1 82.1 56.5 47.7 44.3
278 98.2 86.1 58.1 50.0 57.1
435 97.4 86.5 59.1 51.0 55.7
750 95.2 86.5 58.1 50.4 51.4
1125 97.1 86.1 59.9 52.0 52.9
1500 95.2 85.1 59.2 51.1 51.4
3159 96.3 85.8 59.3 51.2 50.0

Test on out-of-distribution data

60 96.2 83.2 42.7 39.2 64.7
120 91.5 82.4 45.5 40.6 64.7
278 99.2 92.4 51.8 48.3 80.4
435 98.5 90.8 52.8 49.6 78.4
750 96.9 90.8 54.1 50.6 78.4
1125 98.5 90.1 53.0 48.4 78.4
1500 97.7 87.8 52.6 48.0 70.6
3159 96.9 87.8 53.5 49.1 72.5

Table 5. Best Lesson Proof on proprietary dataset. The proprietary dataset comprises a total of 5,176 CT scans, which include scans
of patients with pancreatic tumors as well as healthy scans without pancreatic tumors. We utilized 3,159 scans for training, while the
remaining 2,017 were allocated for testing within the same distribution. For the out-of-distribution dataset, we selected the Panorama
dataset. Detailed information regarding the dataset split can be found in § C. For the segmentation model, we employed the SegResNet
model based on the MONAI codebase for training and assessed the tumor segmentation and detection results using the DSC, NSD, and
sensitivity metrics.



B. Related works
B.1. AI Development on Real Tumors

AI algorithms. Tumor detection and segmentation have been long-standing problems in medical image analysis. To achieve
deliverable results, many recent works leverage state-of-the-art deep learning technology [39, 86].

The U-Net architecture [80] has been widely adopted in medical image analysis. Over the years, numerous well-designed
networks have been proposed to improve the U-Net architecture, including UNet++ [96], TransUnet [6], UNETR [28],
Swin-UNETR [27], and many others [7, 13, 69]. While these methods have demonstrated remarkable performance in tumor
detection and segmentation, they typically rely on a significant number of annotations. The process of annotating real tumors
is not only time-consuming but also requires extensive medical expertise. Sometimes, it needs the assistance of radiology
reports or is even impossible to obtain the annotation [4, 38]. Therefore, the use of synthetic tumors emerges as a promising
solution.

Liu et al. [60] integrate text embeddings derived from Contrastive Language-Image Pre-training (CLIP) into segmentation
models, effectively capturing anatomical relationships and enabling the model to learn structured feature embeddings across
multiple organ and tumor types. With pre-training on large-scale CT volumes with per-voxel annotations for 25 anatomi-
cal structures and seven tumor types, Li et al [55] has developed a suite of models demonstrating robust transfer learning
capabilities across various downstream organ and tumor segmentation tasks.

Preexisting public datasets have made significant contributions to the advancement of AI in tumor detection [56]. We
summarizes key characteristics of existing public datasets for organ and tumor segmentation in table 1, categorized into
those with and without tumor labels. Datasets such as LiTS [4] and KiTS [32] provide essential tumor labels but are limited
with regard to size and variety, with 131 and 489 volumes, respectively, and fewer hospitals contributing data (7 for LiTS
and 1 for KiTS). Larger datasets like FLARE23 [59] include 2,200 volumes and span contributions from 30 hospitals, yet
they focus on a single organ and provide no explicit tumor-specific labels. Similarly, datasets without tumor labels, such as
WORD [62] and AMOS22 [42], are useful for broader anatomical segmentation tasks but lack tumor-specific annotations.
In contrast, AbdomenAtlas 2.0 distinguishes itself by offering the most extensive dataset to date, with 10,136 volumes,
4,700K slices, and 13,223 tumors annotated across multiple organs, including rarer tumor types like esophagus and uterus.
The dataset incorporates data from 89 hospitals across a wide range of countries, providing unprecedented diversity and
comprehensiveness for multi-organ tumor research.

B.2. AI Development on Synthetic Tumors
Tumor synthesis enables the generation of artificial tumors in medical images, aiding in the training of AI models for tumor
detection and segmentation [11, 44, 93]. Synthetic tumors become particularly valuable when acquiring per-voxel annotations
of real tumors is challenging, such as in the early stages of tumor development. There are several advantages of synthetic
tumors over real tumors.

Quality Control: Synthetic data allows for the control of specific variables and the introduction of desired diversity into the
dataset. Real-world datasets often suffer from imbalances, such as an overrepresentation of certain demographics or tumor
stages. Synthetic data can be generated to balance these datasets, ensuring that machine learning models are trained on a
comprehensive and representative sample of data. For rare cancers, collecting enough patient data is particularly difficult.
Synthetic data can help augment these limited datasets, enabling the development of more robust and accurate models for
rare cancer types. Additionally, synthetic data can be used to simulate hard cases that are difficult to capture in real-world
data. Researchers can rapidly iterate and refine their models, leading to faster advancements in tumor detection, diagnosis,
and treatment.

Privacy and Ethical Considerations: One of the major advantages of synthetic data is that it can be used without compromis-
ing patient privacy. Since synthetic data is not directly tied to any real individual, it eliminates the risk of exposing sensitive
patient information. By using synthetic data, researchers can bypass ethical dilemmas associated with real patient data, such
as the need for patient consent and the risk of data breaches.

Synthetic tumors can be used in aiding AI models for tumor detection and segmentation, particularly in situations where
detailed annotations are scarce [11, 16]. Therefore, an effective and universally applicable tumor synthesis approach is
urgently needed to accelerate the development of tumor detection and segmentation methods.

Tumor development is intricately regulated by biological mechanisms at various scales. Tumors, which arise from DNA
mutations in a single cell and represent genetic disorders [50], undergo complex growth processes. Mutated cells lead to
uncontrolled proliferation, which can be benign or malignant [21]. Differences between benign and malignant tumors include



growth rate and invasiveness [50]. Malignant tumors tend to exhibit larger final sizes and faster growth rates compared to
benign lesions [45]. Additionally, slow tumor growth rates have been associated with low malignant potential [12, 83].
These patterns have also been observed in several studies [23, 71]. Malignant tumors usually invade surrounding tissues,
while benign tumors typically remain confined to their original sites. Moreover, even slowly growing malignant tumors can
invade surrounding tissues [47], leading to blurry boundaries between tumors and adjacent tissues. Therefore, it is necessary
to design Accumulation and Growth rules to simulate these features. Tumor necrosis, a form of cell death, indicates a
worse prognosis [76, 77]. Histologically, necrosis is caused by hypoxia resulting from rapid cell proliferation surpassing
vascular supply [35], presenting as non-enhancing irregular areas in CT images [19]. Hu et al. [37] developed a program
that integrates medical knowledge to generate realistic liver tumors. However, these models are generally organ-specific
and require adaptation to work with other organs. Lai et al. [51] proposed a framework that leverages cellular automata to
simulate tumor growth, invasion, and necrosis, enabling realistic synthetic tumor generation across multiple organs.
Generative models have been effectively utilized in the medical field for tasks like image-to-image translation [63, 68, 73, 75],
reconstruction [58, 85, 91], segmentation [8, 18, 48, 88], and image denoising [22]. Utilizing advanced generative models to
synthesize various tumors is also a promising direction [24, 26, 89, 99]. Shin et al. [82] advanced detection by generating
synthetic abnormal colon polyps using Conditional Adversarial Networks. Chen et al. [9] employed a diffusion model
that capitalizes on similarities in early-stage tumor imaging for cross-organ tumor synthesis. Wu et al. [89] employs an
adversarial-based discriminator to automatically filter out the low-quality synthetic tumors to improve tumor synthesis. Guo
et al. [24] incorporates ControlNet to process organ segmentation as additional conditions to guide the generation of CT
images with flexible volume dimensions and voxel spacing.



C. Implementation Details
C.1. Dataset Composition

AbdomenAtlas 2.0 components # of volumes annotated tumor (original) annotators

Public CT in AbdomenAtlas 2.0 (AbdomenAtlas1.1) 9,901 liver, pancreas, kidney, colon human & AI
CHAOS [2018] [link] 20 - human
BTCV [2015] [link] 47 - human
Pancreas-CT [2015] [link] 42 - human
CT-ORG [2020] [link] 140 - human & AI
WORD [2021] [link] 120 - human
LiTS [2019] [link] 130 liver human
AMOS22 [2022] [link] 200 - human & AI
KiTS [2023] [link] 489 kidney human
AbdomenCT-1K [2021] [link] 1,000 - human & AI
MSD-CT [2021] [link] 945 liver, pancreas, colon human & AI
FLARE’23 [2022] [link] 4,100 - human & AI
Abdominal Trauma Det [2023] [link] 4,711 - -

Private CT in AbdomenAtlas 2.0 233 liver, pancreas, kidney, colon, esophagus, uterus human & AI

Table 6. Dataset composition of AbdomenAtlas 2.0. Our AbdomenAtlas 2.0 comprises two components: CT scans from the public
AbdomenAtlas 1.1 dataset and CT scans from a private source, totaling 10,134 tumor-annotated CT volumes, with additional scans expected
from various sources. Note that, for CT scans from AbdomenAtlas 1.1 dataset, we fully annotate six tumor types for each CT scan.

C.2. Comparative Models
The code for the Comparative Model is implemented in Python using MONAI and nnU-Net framework.
nnU-Net Framework. nnU-Net serves as a framework for the automatic configuration of AI-driven semantic segmentation
pipelines. When presented with a new segmentation dataset, it extracts pertinent metadata from the training cases to auto-
matically determine its hyperparameters. It has withstood the test of time and continues to deliver state-of-the-art results.
nnU-Net effectively illustrates that meticulously configuring and validating segmentation pipelines across a diverse range of
segmentation tasks can yield a remarkably powerful algorithm.

We implement UNETR, Swin UNETR, nnU-Net, ResEncM, and STU-Net using the nnU-Net framework. The orientation
of CT scans is adjusted to specific axcodes. Isotropic spacing is employed to resample each scan, achieving a uniform
voxel size of 1.5 × 1.5 × 1.5mm3. Additionally, the intensity in each scan is truncated to the range [-175, 250] and then
linearly normalized to [0, 1]. During training, we crop random fixed-sized 96 × 96 × 96 regions, selecting centers from
either a foreground or background voxel according to a pre-defined ratio. Furthermore, the data augmentation during training
adheres to the default strategies outlined in the nnU-Net framework. All models are trained for 1000 epochs, with each epoch
consisting of 250 iterations. Besides, we utilize the SGD optimizer with a base learning rate of 0.01, and the batch size is
defined as 2. During inference, we utilize the test time augmentation by following the default implementations in nnU-Net
framework. Besides, we use the sliding window strategy by setting the overlapping area ratio to 0.5.
MONAI Framework. MONAI (Medical Open Network for AI) is an open-source framework that supports AI in healthcare.
Built on PyTorch, it offers a comprehensive set of tools for configuring, training, inferring, and deploying medical AI models.
We implement SegResNet, Universal Model, and Suprem utilizing the MONAI framework. Since different methods have
varying hyperparameter settings, we trained and tested the models exactly according to the original hyperparameters specified
in the corresponding papers.
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D. Visual Real Examples in AbdomenAtlas 2.0

Figure 9. Visual examples of six tumor types annotated in AbdomenAtlas 2.0. AbdomenAtlas 2.0 features a diverse distribution
across various tumor stages and sizes. These comprehensive, high-quality tumors, accompanied by per-voxel annotations, significantly
improve the performance of AI models, both on in-distribution and out-of- distribution data. (Figure 10).



E. More Results: Best Lesson from Real Data

Figure 10. Best Lesson from Real Data: Results on in-distribution and out-of-distribution data. (a): while increasing data scale
initially enhances in-distribution performance across various metrics (sensitivity, DSC, and NSD), it eventually plateaus. Notably, certain
organ types, such as the Liver and Kidney, exhibit a decline in performance at the largest scales. (b): In contrast, the scaling trends ob-
served in out-of-distribution datasets demonstrate consistent improvements in specific datasets (e.g., 3D-IRCADb, ULS-Pancreas) without
reaching a plateau, indicating that larger data volumes may enhance generalizability. These results relate to the data-scaling lesson in §1
(1,500 if with real data only). Larger datasets are needed for effective out-of-distribution generalizability.



F. More Results: Best Lesson for generalizability

Figure 11. Best lesson for pancreatic tumors. Integrating real and synthetic data, compared to using real data alone, consistently improves
generalizable performance in sensitivity, DSC, and NSD across various scenarios and data scales. These results underscore the benefits of
this combination in enhancing the accuracy of pancreatic tumor analysis.



Figure 12. Best lesson for kidney tumors. Combining real and synthetic data consistently enhances generalizable performance in sensi-
tivity, DSC, and NSD across various scenarios and data scales, highlighting its effectiveness in improving kidney tumor diagnosis accuracy.
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