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Abstract
Decomposing visual components remains a fundamental challenge in computer vi-

sion. While deep learning has achieved remarkable progress across image understand-
ing tasks, its internal representations are often opaque, making it difficult to interpret
how visual information is processed. In contrast, classical visual descriptors (e.g. edge,
colour, and intensity distribution) have long been fundamental to image analysis and re-
main intuitively understandable to humans. Inspired by this, we present VisualSplit,
a new paradigm designed to explore image decomposition by explicitly leveraging de-
coupled classical visual descriptors. Specifically, it integrates multiple traditional visual
descriptors as independent yet informative inputs, extracting meaningful features through
a reconstruction-based pretraining process. By explicitly decomposing visual attributes,
our method inherently facilitates effective attribute control in various advanced visual
tasks, including image generation and editing, extending beyond conventional classi-
fication and segmentation, suggesting the effectiveness of this new learning approach
towards visual understanding. The code and models will be made publicly available.

1 Introduction
Computer vision, and more recently deep learning, has continuously pursued effective de-
composition of visual information, to extract semantically meaningful visual components
directly from input images, thereby achieving a deeper and clearer understanding of their in-
herent content. In classical computer vision, feature extraction relied heavily on predefined
methods such as dimensionality reduction [21], low-level feature descriptors [13], and hand-
crafted feature extractors [7, 20]. While these traditional methods offer strong deterministic
properties, they are limited in adaptability and scalability, as they are tailored to specific
tasks without the ability to generalise across diverse scenarios.

In contrast, contemporary deep learning strategies approach visual decomposition through
learning-based paradigms such as supervised learning [18, 32] and self-supervised pretext
learning [39]. For instance, RetinexNet [32] decomposes images into reflectance and illumi-
nation components, enabling controlled lighting adjustments while preserving colour. Simi-
larly, HiSD [18] effectively isolates essential human facial attributes, facilitating fine-grained
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(a) Original Image (b) Combined Features (c) Human Depicted (d) VisualSplit(Ours)

Figure 1: Qualitative overview of the key idea. (a) Original image. (b) Visualisation of a
combination of threefold visual descriptors (grey-level histogram displayed in the top-right).
(c) Image completion by a human artist using (looking at) only the combined descriptor set.
(d) Recovery from the proposed VisualSplit, using only the same incomplete descriptor set.

control over expressions and facial feature modifications. More broadly, the split-brain au-
toencoder [39] demonstrates image decomposition by partitioning visual inputs according to
the LAB colour channels, enhancing feature extraction and understanding.

Main idea: Despite extensive studies on classical visual descriptors from traditional com-
puter vision with well-established deterministic properties, their potential in the context of
deep learning models has been largely overlooked. In this paper, we are interested in the
question: “If classical visual descriptors can be used to decompose visual information in
learning-based frameworks?". From an artistic perspective, images are characterised by
stylistic descriptors such as line, colour, and value [25], which closely align with the key
components for computational visual understanding and analysis [3]. Inspired by these par-
allels, we seek to leverage conventional computer vision algorithms to extract visual descrip-
tors—specifically edge, colour segmentation map and grey-level histogram (Section 3). Each
descriptor independently and sparsely captures a distinct aspect of the visual input. Notably,
the combined descriptor depiction offers only partial information of the image (Figure 1b).

Although these descriptors are highly abstract and compressed compared to the original
image, humans can still figure out the main underlying semantic content. To this end, we
present a case study in which an artist was asked to depict an image given such “abstract in-
formation”. Interestingly, the artist was able to reconstruct an image (Figure 1c) very similar
to the original one (Figure 1a). We attribute this ability to the human capacity for understand-
ing incomplete visual concepts. Motivated by this, we seek to explore if such ability can be
modelled by representation learning. To achieve that, we introduce VisualSplit, a mask-free
framework that follows such visual understanding process by learning to integrate (only)
these classical descriptors to reconstruct the underlying image (Figure 1d), which achieves
high representation quality while bringing extra controllability (details in Section 5).

Remark: Although VisualSplit is implemented in a self-supervised manner, the primary fo-
cus of this work is on the study of decoupled visual representations rather than conventional
evaluation pipeline in self-supervised representation learning literature. Our goal is not to
surpass existing representation learning methods on those benchmarks, but rather aiming at
answering the question we asked above. In summary, our key contributions are as follows:

• We revisit classical visual descriptors and introduce a new learning paradigm – Visu-
alSplit, to explore the representation learning capacity using such simple descriptors.

• Aligning closely with human perceptual understanding, the proposed approach high-
lights the potential of the overlooked classical while effective visual descriptors.

• Extensive experimental analysis on low-level (4.4) and high-level (4.3) vision tasks,
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covering various applications, validates the effectiveness of our VisualSplit learning
approach. It shows that precise, independent, and intuitive manipulation of image
attributes (such as geometry, colour, and illumination) can be achieved (4.5 and 4.6).

2 Related Work
Visual descriptors. In the field of computer vision, visual descriptors are widely used to rep-
resent image content. In the classic computer vision area, traditional visual descriptors are
manually designed to capture specific image properties, including edge maps [27] [5], colour
histograms [28], Scale-Invariant Feature Transform (SIFT) [20], and Histogram of Oriented
Gradients (HOG) [7]. Despite their usefulness and deterministic nature, traditional descrip-
tors suffer from rigidity, sensitivity to variations such as lighting and perspective changes,
and limitations inherent in manual feature engineering. In recent years, deep learning ap-
proaches have relied mainly on learning-based methods, particularly convolutional neural
networks (CNNs) and Vision Transformers (ViTs). These approaches automatically learn
rich feature representations from extensive datasets, significantly improving robustness and
descriptive power. [26] [4] [9] [29] However, learning-based methods are not easily inter-
pretable and usually mix different attributes and patterns.

Visual decoupling and disentanglement. Decoupling visual features focuses on elimi-
nating dependencies between components, whereas disentanglement emphasizes the sepa-
ration of distinct underlying factors that correspond to meaningful and independent con-
cepts. These principles are of great importance in various applications such as visual gen-
eration [14, 34], model generalization [6, 11], and model explainability [36, 39]. Given
their conceptual overlap, we examine both lines of research in this discussion. The Split-
Brain model [39] decouples representations by independently processing the LAB channels,
enabling the isolation of distinct channel contributions to the overall task. Li et al. [17]
propose decoupling an image into low-frequency and high-frequency elements, which cor-
respond to body features and edge features, respectively, with a stronger focus on semantic
segmentation tasks. Yang et al. [34] develop a causal disentanglement approach to align
latent factors with the semantics of interest. BayeSeg [11] disentangles domain-invariant
features to enable generalization to unseen data.

3 Methodology
As illustrated in Figure 2, the proposed VisualSplit approach learns decoupled representa-
tions by reconstructing the original visual signal from isolated, incomplete visual descriptors.
VisualSplit comprises three key components: descriptor extraction, a multi-modal encoder,
and a lightweight decoder for image reconstruction.
Descriptor extraction. The VisualSplit leverages traditional computer vision algorithms to
extract three deterministic and human-understandable descriptors: edge maps, colour seg-
mentation maps, and grey-level histograms, denoted as de, dc and dg, respectively.

To extract the desired descriptors, we first transform the image x from the RGB domain
into the LAB domain, denoted as xLAB . Next, we apply the Convolutional Sobel opera-
tor [13] to the L-channel of the image (de = Sobel(xL)), designed to extract of edge de-
scriptors. Simultaneously, we use the L-channel to generate the smooth grey-level histogram
(dg = Hist(xL)) through a Gaussian Kernel with 100 bins providing valuable insights into
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Figure 2: VisualSplit framework. Initially, the RGB image is processed through the tra-
ditional Descriptor Extraction module to obtain segmented colour, edge, and intensity his-
tograms. The colour and edge data will be patchtified and fed into the transformer, whereas
the intensity information will serve as a condition for Cross-attention and to learn scale and
shift parameters (r,β ) for AdaLN-Zero. The loss is calculated on an image level as well as
on the traditional descriptor level. It is worth mentioning that the acquired model can output
both global and local representations, which can be applied to downstream visual tasks.

the intensity distribution. For colour segmentation, we apply the Soft K-Means clustering
algorithm, which partitions the image into K distinct clusters (dc = Cluster(xAB)) based on
colour values. Noteworthy, these descriptors are differential approach (Supp. Section 2.2).

Existing self-supervised representation learning methods are typically built upon the
principle of missing information prediction, while the common approach is explicit masking
strategies. In contrast, our method employs classical visual descriptors, which inherently
produce sparse and abstract representations of the original image. These descriptors can
be regarded as a form of information absence, therefore, additional artificial patch masking
is unnecessary. Moreover, our approach effectively preserves and reinforces globally and
locally meaningful visual structures within the learned representations.
Multi-model encoder. Visual descriptors describe images either locally or globally. In our
case, edge and colour segmentation descriptors primarily capture localised pixel-level infor-
mation, whereas the grey-level histogram captures global information. Given this distinction,
it is essential to employ a multi-modal encoder capable of considering each type of descriptor
simultaneously, while also mapping local and global information into latent spaces, ensuring
a comprehensive representation.

Building on this observation, we construct a multi-modal encoder based on ViT [30],
which operates on local patches. To accommodate the distinct roles of local and global
descriptors, we treat local descriptors as patch-wise inputs for backbone learning, while
incorporating global descriptors, such as histograms, to provide global conditioning.

The conditioning process consists of two key components: AdaLN-Zero [23] and a
Multi-head Cross-attention Layer, each operating within separate blocks. AdaLN-Zero learns
parameters that scale and shift intermediate features derived from an MLP, which takes dg as
input. Simultaneously, the multi-head cross-attention layer utilises dg as the key-value pair,
allowing the model to integrate relevant information from a global perspective.

To further enhance the learning of global representation, we introduce additional learn-
able embedded patches that represent the global state at the output followed by the design of
ViT [30], while the remaining outputs correspond to local representations.
Decoder. Our model employs a more lightweight decoder specifically designed for the pre-
training phase. The primary objective is to ensure that the encoder learns more complex
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PSNR/ SSIM PSNR/ SSIMPSNR/ SSIM

29.06/ 0.8244 28.33/ 0.885825.60/ 0.8149

Figure 3: Visualisation of pre-
train reconstruction task. Top:
original images, bottom: our
restoration results.

Acc. = 60.0 Acc. = 67.1 Acc. = 74.0 Acc. = 73.4

Figure 4: Clustering visualisation with K clusters. Each
set shows the colour-clustered LAB image (top), alongside
the isolated A-channel and B-channel (bottom left/right).
Acc. indicates the classification accuracy of linear probing.

representation than the decoder. To achieve this, the decoder is intentionally kept much
shallower than the encoder, a design choice that also accelerates the training process. We
discussed it further in Supp. Sec. 2.3.
Pretraining objectives. The goal of our pretraining is to reconstruct the original image.
Therefore, the primary objective during this phase is to minimize the discrepancy between
the reconstructed image x̂RGB and the original image xRGB in the pixel space. To achieve
this, we compute the mean squared error (MSE) between the two images. Additionally,
we incorporate the LPIPS loss function [40] to assess reconstruction quality in latent space,
providing a more comprehensive and perceptually aligned evaluation.

Furthermore, the encoder is required to effectively capture input visual descriptors and
map them to latent representations. To ensure its capability to do so, we introduce a de-
scriptor consistency loss. By applying the same processing operations to the reconstructed
image in pixel space as to the input, we apply visual descriptors on the reconstructed image.
The output of these descriptors are then compared with the original ones to compute the
descriptor consistency loss, consisting of three terms:

Le = ∥de − d̂e∥1
1, Lg =

1
N

N

∑
i

(d i
g − d̂ i

g)
2

d i
g + d̂ i

g
, Lc = ∥dc − d̂c∥1

1, (1)

where de, dg and dc represent edges, grey-level histogram, and colour segmentation map,
respectively. Ablation studies on objective functions are shown in Supp. Sec. 4.

4 Experiments

4.1 Implementation Details and Benchmark

Our method is compatible with ViT models of any size; for simplicity, we adopt ViT-Base as
the backbone in our experiments. The model is self-supervised and pre-trained on ImageNet-
1K [8]. Our implementation mainly follows ViTMAE [12], using the AdamW [19] optimizer
with a cosine decay learning rate schedule and an initial learning rate of 1.5× 10−4. All
images are resized and center-cropped to 224×224. Full implementation and training details
are provided in the supplementary material.
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Figure 5: Reconstruction results
with grey-level histograms at differ-
ent brightness levels.

𝑓𝑓 = 0.25 𝑓𝑓 = 0.75 𝑓𝑓 = 1 𝑓𝑓 = 1.25 𝑓𝑓 = 1.75

Figure 6: Reconstruction with different colour segmentation
map inputs extracted from the image after different colour bal-
ance processing, where f is the enhancement factor.

4.2 Performance on the Pre-training Task
The pretraining task is formulated as image reconstruction. Figure 3 presents qualitative
results along with PSNR (Peak Signal-to-Noise Ratio) and SSIM (Structural Similarity Index
Measure) scores [31]. The results demonstrate that the model can effectively reconstruct
images using only isolated and incomplete descriptors.
Colour segmentation clusters. Choosing an appropriate number of clusters is critical for
colour segmentation. Too few clusters lead to excessive information loss, degrading perfor-
mance; too many make the segmented map resemble the original image, oversimplifying the
task and limiting the model’s ability to learn meaningful representations. Figure 4 illustrates
the visual impact of varying cluster counts and their effect on linear probing performance.
The model performs best when the number of clusters is set to 6.
Input independence. We evaluate how different inputs independently influence the model’s
output. Ideally, modifying one input should affect only specific attributes of the output while
leaving others largely unchanged.

We first vary the grey-level histogram, which captures image brightness. We use the
SIDD dataset [1], which offers images under low, normal, and high exposure, we extract all
inputs from the normal image. For other exposures, only the histogram is updated, keeping
edge and colour descriptors fixed. Figure 5 shows the qualitative results.

To assess the effect of colour segmentation, we use synthetic examples due to the diffi-
culty of sourcing real images with identical edges and brightness but different colours. Start-
ing with an image from the Flickr dataset [37], we extract all descriptors. We then alter its
colour balance to generate variations and extract new colour segmentation maps, which are
combined with the original edge and histogram inputs. Visual results are shown in Figure 6.

4.3 Representation Analysis on Classification

Setting. To evaluate the performance of the representations of different models, we conduct
classification experiments with fine-tuning and linear probing. In this experiment, we extract
representations from the pre-trained encoder and a lightweight header will be added for fine-
tuning and linear probing. An additional learnable embedded patch is added to the model at
the input of the encoder to serve its state at the output as a global representation. The full
implementation detail is also shown in the supplementary material.

To validate the efficacy of our proposed methodology, we conducted comparisons with
previous self-supervised methods, Split-brain Autoencoder [39], MAE [12], and PeCo [10].
To ensure fair comparisons, the backbone of all the models is ViT-base architecture. We
replace the Split-brain Autoencoder encoder and decoder with ViT-base architecture, as the
original implementation is CNN-based. Meanwhile, we compared the performance with our
implementation without pre-training to validate the effectiveness of the pre-training method.
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Table 1: Classification generalisation in
Accuracy (%).

Method Classification (Acc.%)
Finetuning Linear Probing

scratch, our impl. 82.0 0.1
Split-brain Auto [39] 82.3 36.4
MAE [12] 83.6 72.4
PeCo [10] 84.5 51.7

VisualSplit (Ours) 83.5 74.0

Table 2: Transfer learning for classification and
segmentation.

Method Classification (Acc.%) Segmentation (mIoU)
Places dataset ADE20K dataset

scratch, our impl. 79.9 47.7
Split-brain Auto [39] 81.4 44.4
MAE [12] 82.5 48.4
PeCo [10] 82.4 48.7

VisualSplit (Ours) 82.7 49.7

Results. In Table 1, we compare the quantitative results of different methods of fine-tuning
and linear probing. For fine-tuning, the performance differences among all methods are
not significant; our method is comparable to ViTMAE [12] and slightly inferior to PeCo.
However, our model performs better than the other models in linear probing, which indicates
that our model can extract the useful underlying representations from images better.

4.4 Representation Analysis on Transfer Learning

To further evaluate the performance of the extracted representation, we used the classification
task pretrained encoder from Section 4.3 to assess transfer learning in downstream tasks.

First, we tested its classification generalisation on other datasets. Additionally, we con-
ducted a Semantic Segmentation experiment on ADE20K [42], leveraging the segmentation
head from Segformer [33], which is a lightweight decoder composed solely of MLPs. The
detailed structure is provided in the supplementary material.

Table 2 presents transfer learning results on classification and segmentation using the
Places [41] and ADE20K [42] datasets, respectively. Our model achieves the best transfer
performance, e.g. 49.7 mIoU in semantic segmentation, outperforming MAE and PeCo by
+1.3 and +1.0, respectively. This advantage may arise from pretraining on visual descriptors
rather than raw images, encouraging the model to learn underlying structures instead of
dataset-specific biases.

4.5 Representation for Visual Restoration

Setting. In this section, we utilise image restoration tasks to intuitively demonstrate the ef-
fectiveness of our learned representations. In this task, we combine with pre-trained Stable
Diffusion 1.5 [24]. Our learnt representation encompasses both global and local represen-
tations. We employ the global representation combined with the original text embedding,
inspired by IP-Adapter [35], providing an overall condition for the generated image. Mean-
while, the local representations are integrated via ControlNet [38] to guide the structural
generation within the UNet model, enabling precise control in the image regions.

Table 3: Image restoration results.
Method Prompt PSNR SSIM

ControlNet [38] w/o 17.34 0.6374
w/ 16.52 0.6051

T2I Adapter [22] w/o 17.69 0.5421
w/ 17.30 0.5459

ControlNet++ [16] w/o 19.94 0.6549
w/ 19.50 0.6399

VisualSplit (Ours) w/o 26.56 0.8664

To enable an effective comparison with ex-
isting guidance methods, ControlNet [38], T2I-
Adapter [22], ControlNet++ [16], we use the edge
map and segmented colour map directly as inputs for
these baseline methods. We also input the grey-level
histogram directly through IP-Adapter. However, we
found that using only the grey-level histogram in IP-
Adapter might limit the model ability during genera-
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Input ControlNet

w/o prompt w/ prompt

T2I-Adapter

w/o prompt w/ prompt

ControlNet++

w/o prompt w/ prompt

Ours Ground Truth

Figure 7: Comparison of image restoration results using Stable Diffusion 1.5 with various
guidance methods, which includes ControlNet [38], T2I-Adapter [22], ControlNet++ [16],
and our proposed method, with the ground truth shown in the final column. The condition
inputs are edge, segmented colour map, and grey-level histogram inputs, shown in the first
column. Each method, except for our method, displays results with and without prompts,
where prompts are generated by BLIP [15].

tion. For further comparison, we additionally employ
BLIP [15] to generate a text prompt, which is then fed into the text encoder.

Results. As shown in Table 3 and Figure 7, our method reconstructs high-quality images,
preserving both global features and local details better than baseline approaches. This high-
lights the advantage of our structured representations over raw inputs, improving model in-
terpretability and generalizability. Moreover, our approach effectively manages multiple
representation controls, overcoming the limitations of traditional methods.

4.6 Representation for Visual Editing

Our approach benefits from separating visual descriptors in advance. In image editing task,
it allows us to edit these descriptors with much greater ease than directly manipulating and
controlling the image. In this section, we demonstrate how simple adjustments to the seg-
mented colour map and grey-level histogram enable controllable image editing without any
additional training or modification on models. We followed the setting of Section 4.5, and
only edited the original segmented colour map to edit the colour regions of the generated im-
age and keep the other inputs the same. The region of the colour map will only be recoloured
to ensure it will not conflict with the edge.

As illustrated in Figure 8, modifying the segmented colour map provides a straightfor-
ward way of directing the model to edit the original image with precise control. Notably, our
method maintains image harmony while performing controlled editing. We also have modi-
fied the grey-level histogram for image editing to adjust the brightness of the output, which
is shown in Supp. Sec. 5.2. We further conducted a survey based on human perception for
the qualitative analysis of image editing tasks in Supp. Sec. 5.1. The result shows that our
method significantly outperforms the others in all attributes.
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ControlNet
w/o prompt w/ prompt

T2I-Adapter
w/o prompt w/ prompt

ControlNet++
w/o prompt w/ prompt

OursOriginal
Original

Colour Map
Edited

Figure 8: Comparison of colour editing results using modified segmented colour maps
as input to Stable Diffusion 1.5, guided by ControlNet [38], T2I-Adapter [22], Control-
Net++ [16], and our method. The first column shows original images, followed by original
and edited colour maps. For each baseline, results are shown with and without prompts gen-
erated by BLIP using edited colour keywords. Our method requires no prompts.

5 Discussion
Mask-free training. Unlike random pixel dropout, our mask-free approach eliminates the
need for masking ratio tuning. From an information-theoretic perspective, it leverages only
17% of the RGB signal, less than Split-Brain Autoencoder (50%), MAE (25%), and PeCo
(60%), which encourages model to learn better representation [2]. See Supp. Sec. 3. As
shown in Section 4.3, our method slightly underperforms baselines after fine-tuning but
notably outperforms them under linear probing, suggesting more explicit representations.
It also generalises across datasets and tasks (Section 4.4), while in generation tasks (Sec-
tion 4.5). The learnt representation adapts seamlessly to other models.
Decouple controllable attributes. Section 4 demonstrates VisualSplit’s ability to isolate
and control specific attributes (e.g. geometry, colour, and illumination) via decoupled visual
inputs. In Section 4.2, we show that these inputs remain independent of the generated outputs
during pre-training. Section 4.6 further illustrates that our descriptors can independently and
effectively guide the generation process without requiring any model modification, enabling
precise control over individual attributes without altering the whole.

While our method integrates classical visual descriptors and performs well across tasks,
its limitations and potential directions for future work are discussed in Supp. Sec. 7 and 6.

6 Conclusion
In this work, we investigated the challenge of decoupling the visual content by leveraging
classic visual descriptors through learning-based paradigms, which have been largely over-
looked in deep models. Inspired by the human ability to infer and reconstruct visual content
from incomplete descriptor combinations, we explore whether deep models can emulate
this capacity and propose VisualSplit, a new visual decoupling paradigm. Our experiments
demonstrate that the learned representations not only excel in low-level tasks such as classifi-
cation and segmentation but also effectively guide high-quality image generation and editing
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through decoupled descriptor inputs. Furthermore, this approach opens new possibilities for
advanced image manipulation and encourages further research into decoupling-based models
that integrate conventional visual descriptors. We hope this work provides a fresh perspec-
tive on visual decoupling and inspires future research on its extensive applications across
various visual tasks.
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