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1. Introduction
This document provides supplementary materials for the

main paper. Specifically, Section 2 presents thorough de-
tails of the model training used in our experiments followed
by an ablation study of parameters. The supplemental de-
noising quantitative evaluation is presented in Section 3.
Section 4 explores more low-level applications, including
image super-resolution and inpainting, with comparison to
the proposed MeD. Section 5 and Section 6 provide further
details regarding the datasets used in our research and the
methods for synthesising noise and downscale corruption.
Finally, we present more qualitative results, with compari-
son to other methods, in Section 7.

2. Denoising Training Settings
For methods that use Swin-Tx model, e.g. N2C [11],

MeD and N2N [10], we use the same set of hyperparam-
eters for training. Prior to the formal experiment, we con-
ducted some pilot experiments to test and select the final
choice of hyperparameters on N2C. Following [23, 11], we

use 48× 48 random crops from DIV2K images. The train-
ing process is performed using a mini-batch size of 8 and
undergoes a total of 500K iterations. We use Adam with β1

= 0.9 and β2 = 0.99 and learning rate of 10−4, which decays
every 100K with decay ratio 0.5.

Since the model is not the focus of this work, we use
a simple 2-layer Swin-Tx for a fair comparison with other
non-Transformer models, and is less likely to overfit the
synthesised training noise distribution.

The influence of the size of the Corruption Pool on the
performance of MeD and N2C [11] is demonstrated in Fig-
ure S1 (b). The experiments are started from only fixed
Gaussian noise, then train on Gaussian noise with random
sigma values. Finally, we expand the corruption pool from
only Gaussian noise to more noise types and even with dif-
ferent types of down-scale and inpainting mask operations.

Table S1. Analysis of hyper-parameters for the loss terms.
Loss Hyperparameters for Gaussian Noise
[LX , LN , LC , LM] σ̂ = 25 σ̂ = 50 σ̂ = 75

[1.0, 0.5, 0.5, 0.025] 31.18/ 0.8839 27.68/ 0.7765 25.74/ 0.7172
[0.5, 1.0, 0.5, 0.025] 31.04/ 0.8813 27.87/ 0.7788 25.86/ 0.7190
[0.5, 0.5, 1.0, 0.025] 30.85/ 0.8752 27.96/ 0.7794 25.92/ 0.7199
[1.0, 1.0, 1.0, 0.025] 31.31/ 0.8876 28.05/ 0.7810 26.01/ 0.7216
[1.0, 1.0, 1.0, 0.050] 31.29/ 0.8870 27.58/ 0.7659 24.29/ 0.6931
[1.0, 1.0, 1.0, 0.000] 31.20/ 0.8832 26.24/ 0.7391 23.78/ 0.6517

2.1. Hyperparameter Analysis

Prior to finalising the training procedure, we conducted
experiments to analyse the impact of different hyperparam-
eters associated with the loss terms in our model. Specifi-
cally, we tested varying the weighting factors LX , LN , LC

and λ for the Noise Reconstruction loss, Scene Reconstruc-
tion loss, Cross Compose loss, and Mix Scene reconstruc-
tion loss, respectively. The analysis is shown in Figure S1
(a) and Table S1

Firstly, we conducted the experiment for analysing the
value λ in Figure S1 (a). The orange (top) curve represents
the performance of the optimal choice λ = 0.05.

LX , LN and LC are tested from 0.5 to 1, with the best
results obtained at LX = 1, LN = 1 and LC = 1.

Based on these experiments, we selected hyperparame-
ters of LX = 1, LN = 1, LC = 1, and λ = 0.025 for all
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(a) Analysis on λ for Bernoulli Manifold Mixture (b) Analysis on the training Corruptions Pool

Figure S1. Ablation experiments. All models are tested with Gaussian noise removal on the CBSD68 dataset, unless otherwise specified.
(a) MeD with Bernoulli Manifold Mixture Loss achieves the best performance at λ = 0.05 (the orange/top curve). (b) The performance
of N2C and MeD is assessed while varying trained input corruptions. The findings suggest that MeD benefits much better from a diverse
training corruption pool (the “+” sign in the horizontal axis indicates the further inclusion of a corruption in the corruption pool.).

Table S2. Supplementary quantitative comparison of different methods on CBSD68 dataset [12] for synthetic Gaussian noise. The ex-
periments were conducted on fixed and random variance respectively. The best results are highlighted in bold, while the second best is
underlined

Training Test Noisy/ Clean Noisy/ Noisy Invariant Feature
Schema σ̂ N2C [11] DBD4 [8] N2N [10] N2S [3] R2R [15] LIR [6] MeD

Gaussian
σ = 15

15 33.21/ 0.9194 33.17/ 0.9179 33.16/ 0.9175 32.88/ 0.9099 31.19/ 0.8752 29.29/ 0.8118 33.20/ 0.9181
25 28.04/ 0.7588 26.36/ 0.7473 26.56/ 0.7521 26.27/ 0.7456 23.51/ 0.5529 21.80/ 0.4802 29.80/0.8401
50 19.89/ 0.3755 19.86/ 0.3741 19.68/ 0.3672 16.13/ 0.1978 16.09/ 0.2080 11.12/ 0.1217 23.51/ 0.5529
75 17.16/ 0.2562 16.62/ 0.2314 14.59/ 0.1561 14.99/ 0.1642 14.09/ 0.1280 11.10/ 0.1042 20.47/ 0.3870

Gaussian
σ = 50

15 30.69/ 0.8497 30.70/ 0.8478 30.80/ 0.8619 29.87/ 0.8267 28.15/ 0.7872 29.44/ 0.8011 30.88/ 0.8799
25 29.81/ 0.8140 29.63/ 0.8182 29.54/ 0.8256 29.54/ 0.8256 28.89/ 0.8099 28.95/ 0.7967 30.19/ 0.8218
50 28.56/ 0.7721 28.32/ 0.7765 28.30/ 0.7490 28.19/ 0.7802 27.80/ 0.7547 28.02/ 0.7682 28.56/ 0.7835
75 22.60/ 0.5877 22.47/ 0.6042 22.45/ 0.5759 21.69/ 0.5433 21.42/ 0.5881 20.25/ 0.5368 25.63/ 0.7372

denoising training in our work. This provides an optimal
balance between the different objectives.

3. Additional Denoising Evaluation
In this section, we present additional quantitative evalu-

ations of our denoising results, which were not included in
the main paper. The results are in Table S2 with additive
Gaussian Noise, supplement to Table 1 in the main paper.

3.1. Generalisation on Unseen Noise Removal

To evaluate the generalisation ability of trained models
on unseen noise removal, we conducted an additional exper-
iment with more methods using only a single noisy image in
Table S3. The results show that our method achieves com-
parable performance to state-of-the-art methods specially

designed for Gaussian noise removal, and outperforms all
compared methods on other noise types, while training only
on the Gaussian noise. This further highlights the generali-
sation ability of our approach in handling unseen and unfa-
miliar noise distributions.
3.2. Further Analysis on Real-world Generalisation

In the main paper, we have shown that our method gen-
eralises well to real-world scenarios when trained only on
synthetic data. Moreover, here we conduct experiments on
training with a real-world dataset (SIDD without GT), and
report the test results on SIDD and PolyU in Table S4.
Analysis: Comparing Table S4 and Table 4 in the main pa-
per, it shows that all methods have significant improvement
in performance on SIDD after training on SIDD, but little
improvement on PolyU.



Table S3. Performance comparison of single-view approaches and Ours training on Gaussian noise and testing on various noise types.

Noise Type DIP [17] NAC [19] S2S [16] IDR [24] Restormer [21] MeD (Ours)

Gaussian, σ̂ ∈ [25, 75] 25.62/ 0.7017 27.13/ 0.7391 27.71/ 0.7622 28.52/ 0.8061 29.10/ 0.8250 28.45/ 0.8057
Speckle, v̂ ∈ [25, 50] 30.14/ 0.8574 31.55/ 0.8859 31.83/ 0.8980 28.62/ 0.8763 30.12/ 0.8557 33.48/ 0.9115
S&P, r̂ ∈ [0.3, 0.5] 28.62/ 0.7957 29.89/ 0.8741 30.57/ 0.9053 27.26/ 0.7544 23.09/ 0.6381 30.84/ 0.9135

AVG 28.13/ 0.7849 29.52/ 0.8330 30.04/ 0.8552 28.13/ 0.8123 27.44/ 0.7729 30.92/ 0.8770

Table S4. Train and test both on real-world datasets (PSNR/SSIM).

Method MAC (G) Supervised Trained with SIDD [1] PolyU [20]

Restormer [21] 140.99 ✓ Real (SIDD) 40.06/ 0.9601 36.38/ 0.9588
NAFNet [5] 63.6 ✓ Real (SIDD) 40.31/ 0.9667 27.36/ 0.9225

N2N [11] 26.18 ✗ Real (SIDD) 32.82/ 0.7297 36.22/ 0.9679
N2S [3] 26.18 ✗ Real (SIDD) 30.98/ 0.6018 36.41/ 0.9721
CVF-SID [14] 77.86 ✗ Real (SIDD) 34.71/ 0.9179 33.00/ 0.8768
MM-BSN [22] 339.46 ✗ Real (SIDD) 37.37/ 0.9362 35.40/ 0.9484

MeD (Ours) 26.18 ✗ Synthetic (NP) 35.81/ 0.8278 38.65/ 0.9855
MeD (Ours) 26.18 ✗ NP + SIDD 37.52/ 0.9434 38.91/ 0.9894

Considering that collecting real data is expensive and
sometimes infeasible compared to synthetic data and, as
our following experiments show, generalising to new real
datasets (real-to-real) is another issue (since the noise distri-
butions are different), the model trained on synthetic noise
data is more feasible and practical.

4. More Application Exploration
4.1. Experiment on Image Super-resolution

Figure S2 and Figure S3 show the qualitative results of
our method for ×3 and ×4 super-resolution on Set5 dataset
[4], compared with RCAN [25] and DASR [18]. It shows
that our method achieves better performance than these
methods, by using a corruption pool that contains both noise
and down-scaling process.

4.2. Experiment on Image Inpainting

Evaluation is performed on Set11 [9]. Please see Fig-
ure S4 for two examples. It can be seen although our
method is not designed for inpainting, we can still achieve
better performance than sate-of-the-art methods such as
DIP [17] and S2S [16].

5. Datasets
We used five different datasets to train and evaluate the

denoising methods: DIV2K [2], CBSD68 [12], SIDD [1],
CC [13], and PolyU [20].

DIV2K: DIVerse 2K resolution high-quality images [2]
(DIV2K) contain 800 high-resolution images with a resolu-
tion of 2K or 4K. To train our denoising method, we added

different types and levels of noise to the DIV2K dataset.

CBSD68: CBSD68 dataset [12] contains 68 colourful
images with various levels of synthesising noise. These
images were obtained from a range of sources, including
natural scenes and synthetic images.

SIDD: The Smartphone Image Denoising Dataset [1]
(SIDD) is a large-scale real-world dataset containing
24,000 images captured by smartphone cameras in ten
scenes with varying lighting conditions. The ground truth
images for the SIDD dataset are provided along with the
noisy images in the dataset.

CC: Cross-Channel Image Noise Modeling [13] (CC) is
another real-world dataset which contains 11 static scenes
captured by three different consumer cameras. For each
scene, it contains one temporal image and the precomputed
temporal mean and covariance matrix data.

PolyU: PolyU dataset [20] is comprised of 40 different
scenes captured by cameras. It contains the original image
corrupted by realistic noise and the ground truth version
which is obtained by averaging multiple exposures to
remove the noise.

We also used Set5 dataset [4] and Set11 [9] to evalu-
ate the super-resolution and image inpainting performances.

Set5 dataset: We use Set5 dataset [4] for super-resolution
task. The Set5 dataset [4] consists of 5 high-quality images
with different contents, including “baby”, “bird”, “butter-



Set5 “Bird” [4] RCAN [25] DASR [18] MeD (Ours)
PSNR/SSIM 34.89/ 0.9512 34.42/ 0.9364 36.66/ 0.9747

Figure S2. Visual comparison of image super-resolution (×3) methods on Set5 “Bird” [4] images.

Set 5 “Butterfly” [4] RCAN [25] DASR [18] MeD (Ours)
PSNR/SSIM 30.91/ 0.9459 30.82/ 0.9527 31.12/ 0.9636

Figure S3. Visual comparison of image super-resolution (×4) methods on Set5 “Butterfly” [4] images.

Set 11 “Parrots” [4] DIP [17] S2S [16] MeD (Ours)
PSNR/SSIM 31.94/ 0.9479 33.91/ 0.9224 34.01/ 0.9507

Set 11 “Cameraman” [4] DIP [17] S2S [16] MeD (Ours)
PSNR/SSIM 30.97/ 0.9778 33.37/ 0.9355 34.99/ 0.9478

Figure S4. Visual comparison of image Inpainting methods on Set11 [9] images.



fly”, “head”, and “woman”. Each of the images in the Set5
dataset has a magnifying factor of 2, 3, or 4, allowing us
to evaluate the performance of our image super-resolution
model across a range of magnification factors.

Set11 dataset: We compare our method (MeD) with DIP
[17] and S2S [16] on image inpainting tasks using the
Set11 dataset [9], which contains 11 grayscale images.

6. Synthesising Noisy Data and Downsampling
Corruptions

We utilise the Pillow library1 in Python to synthesise
noisy data and perform downsampling corruptions.

6.1. Synthesising Noise

To evaluate the performance of our proposed algo-
rithm, we synthesised noisy images using several types of
noise models, including Gaussian, Local Variance Gaus-
sian, Poisson, Speckle, and Salt-and-Pepper.
Remark: The original pixel value at position (i, j) in the
image can be notated as I(i, j) and the noisy pixel value
can be notated as Inoisy .

Gaussian Noise: Gaussian noise is a type of additive noise
that is commonly found in digital images. It is modelled as
a normal distribution with zero mean and a standard devia-
tion σ. To synthesise Gaussian noise, we added Gaussian-
distributed noise to the original image. Specifically, we
added Gaussian noise with zero mean and standard devi-
ation σ to each pixel of the input image, where σ was set to
10. The noisy pixel value Inoisy(i, j) is given by:

Inoisy(i, j) = I(i, j) +N(i, j), (1)

N(i, j) is a random variable generated from a Gaussian
distribution with zero mean and standard deviation σ.

Local Variance Gaussian Noise: Local Variance Gaussian
noise is a variant of Gaussian noise that takes into account
the local variance of the image. In this case, we added
Gaussian noise with different standard deviations to differ-
ent local regions of the input image to achieve more realistic
noise patterns. Specifically, the standard deviation of Gaus-
sian noise for each pixel was calculated based on the local
variance of its neighbouring pixels. The noisy pixel value
Inoisy(i, j) is given by:

Inoisy(i, j) = I(i, j) +NL(i, j), (2)

where NL(i, j) is a random variable generated from a Gaus-
sian distribution with zero mean and standard deviation

1https://pillow.readthedocs.io/en/stable/

σL(i, j), which is calculated as:

σL(i, j) = k ∗ σlocal(i, j), (3)

where σlocal(i, j) is the local variance of the image at pixel
(i, j), and k is a scaling factor that determines the strength
of the noise.

Poisson Noise: Poisson noise is a type of noise that arises
from the random nature of photon arrival in digital images.
It is modelled as a Poisson distribution with parameter λ.
To synthesise Poisson noise, we first modelled the image as
a Poisson process and then generated noisy pixels based on
this model. Specifically, the noisy pixel value Inoisy(i, j) is
given by:

Inoisy(i, j) = min(255,max(0,Poisson(λ(i, j)) + I(i, j))), (4)

where I(i, j) is the original pixel value at position (i, j),
λ(i, j) is the mean value of the Poisson distribution, and
Poisson(λ(i, j)) is a random variable generated from a
Poisson distribution with mean λ(i, j).

Speckle Noise: Speckle noise is a type of multiplicative
noise that is commonly found in ultrasound and radar im-
ages. It is modelled as a multiplicative noise with a uniform
distribution between 0 and 1. To synthesise speckle noise,
we multiplied each pixel of the original image with a ran-
dom value drawn from a uniform distribution between 0 and
1. Specifically, the noisy pixel value Inoisy(i, j) is given by:

Inoisy(i, j) = I(i, j) ∗ U(0, 1), (5)

where U(0, 1) is a random variable drawn from a uniform
distribution between 0 and 1.

Salt-and-Pepper Noise: Salt-and-pepper noise is a type of
impulse noise that occurs when some pixels in the image
are replaced with the maximum or minimum pixel value. It
is modelled as a random process that replaces a certain per-
centage of the pixels in the image with either the maximum
or minimum pixel value. Specifically, the noisy pixel value
Inoisy(i, j) can be calculated as follows:

Inoisy(i, j) = I(i, j) + S(i, j)− P (i, j), (6)

where S(i, j) and P (i, j) are random variables that model
the presence of salt-and-pepper noise, respectively. They
are defined as follows:

S(i, j) = Imax ∗ Bernoulli(ps), (7)

P (i, j) = Imin ∗ Bernoulli(pp), (8)

where Bernoulli(p) is a random variable that takes the value
1 with probability p and the value 0 with probability 1− p.



Note that S(i, j) and P (i, j) are only added to the pixel
value I(i, j) with the respective set probabilities ps and pp.
Therefore, the total percentage of pixels affected by salt and
pepper noise is ps + pp.

6.2. Downscale Corruption

The down-scale corruption contains down-scale interpo-
lation, including Bicubic, Lanczos, Bilinear and Hamming.
We use OpenCV-Python for the down-scaling process.

7. Additional Qualitative Results
The following figures show the denoising comparison on

both synthetic noise removal (Figure S5 – Figure S14) and
denoising real noise data (Figure S15 – Figure S22).
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Figure S6. Visual comparison of image denoising methods on Kodak [7] images with Gaussian (σ = 25) + local variance Gaussian noise.



Figure S7. Visual comparison of image denoising methods on Kodak [7] images with Gaussian (σ = 25) + local variance Gaussian noise.



Figure S8. Visual comparison of image denoising methods on Kodak [7] images with Gaussian (σ = 50) + local variance Gaussian noise.



Figure S9. Visual comparison of image denoising methods on Kodak [7] images with Gaussian (σ = 50) + local variance Gaussian noise.



Figure S10. Visual comparison of image denoising methods on Kodak [7] images with Gaussian (σ = 50) + local variance Gaussian noise.



Figure S11. Visual comparison of image denoising methods on Kodak [7] images with Gaussian (σ = 75) + local variance Gaussian noise.



Figure S12. Visual comparison of image denoising methods on Kodak [7] images with Gaussian (σ = 75) + local variance Gaussian noise.



Figure S13. Visual comparison of image denoising methods on Kodak [7] images with Gaussian (σ = 75) + local variance Gaussian noise.



Figure S14. Visual comparison of image denoising methods on Kodak [7] images with local variance Gaussian + Poisson noise.



Figure S15. Visual comparison of image denoising methods on real noisy image dataset SIDD [1] example images with real noise.



Figure S16. Visual comparison of image denoising methods on real noisy image dataset SIDD [1] example images with real noise.



Figure S17. Visual comparison of image denoising methods on real noisy image dataset SIDD [1] example images with real noise.



Figure S18. Visual comparison of image denoising methods on real noisy image dataset SIDD [1] example images with real noise.



Figure S19. Visual comparison of image denoising methods on real noisy image dataset PolyU [20] example images with real noise.



Figure S20. Visual comparison of image denoising methods on real noisy image dataset PolyU [20] example images with real noise.



Figure S21. Visual comparison of image denoising methods on real noisy image dataset PolyU [20] example images with real noise.



Figure S22. Visual comparison of image denoising methods on real noisy image dataset PolyU [20] example images with real noise.


