
Hierarchical Articulated NeRF for 3D Human
Reconstruction and Rendering

Hao Chen1,2 Shanxin Yuan1 Helisa Dhamo1 Ales Leonardis1,2

1Huawei Noah’s Ark Lab 2University of Birmingham

Abstract. Neural Radiance Fields (NeRF) have gained popularity for
3D representation and rendering of objects and scenes due to their high
quality photo-realistic results. NeRFs are capable to synthesize novel
views of rigid objects and have been extended to dynamic and deformable
real scenes. The main initial limitation of NeRF is its speed. Several
methods considerably improved the efficiency of training and inference,
however, sacrifice either on quality or controllability. In this paper we
propose Hierarchical Articulated NeRF (HANeRF), a method that over-
comes this issue by simultaneously being compatible with fast data struc-
tures for sampling and high-resolution NeRF techniques. HANeRF lever-
ages importance sampling to allow for efficient dynamic deformations
with a low per sample computation. An hierarchical articulated defor-
mation model is used where blendshape parameters are diffused into 3D
in the observed domain for a fixed set of coarse grid points. To retrieve
the deformation field, we use grid points to interpolate these blendshape
parameters for the sampled points. Aside of extensive ablation studies
on pipeline components, we present the results of HANeRF on the ZJU
dataset where it is used to animate 3D virtual humans.

1 Introduction

Virtualization of content has become a vital element in many areas of modern
life. Synthetic data presentation of products online, the 3D capture of scenes with
drones and the advent of virtual reality setups are just some of the many exam-
ples where photorealistic rendering is the crucial technology to revive the scene
content after the scene has been captured. Complex lighting conditions, varying
textures and dynamic motion present challenges to extracting high quality scene
representations and to synthesize novel views that with satisfying quality. The
proposal of an implicit scene representation through a Neural Radiance Field
(NeRF) [17] has inspired a number of works that try to tackle long-standing
graphics problems in a novel way by using deep learning to represent a scene
implicitly as a 5D function encapsulating the location (x, y, z) in 3D, together
with the emitted radiance θ in each direction ϕ. In only a short amount of time,
NeRF-based methods have achieved state-of-the-art rendering quality in many
areas [15] and creative extensions to the original idea have made it possible to
implicitly cope with light changes [15], dynamic scene content [12, 23, 26] and
even include human shape priors [24, 25].

2 Hierarchical Articulated NeRF

Even though NeRFs store the scene content with a comparably low number
of parameters, i.e.in the order of 1 M , training and evaluation of a NeRF is
computationally complex. A VR-ready image rendering of the original NeRF, for
instance, would require 37 petaFLOPS, which is far from what current GPUs can
compute [18]. Several recent works have successfully proposed ways to achieve
faster inference [11, 7, 27, 33, 6, 31, 4]. While training initially required orders of
magnitude more time and resources [18, 13, 9], it has also been made significantly
more efficient using direct voxel grid optimization [28].

To this end, we contribute:

1. We introduce iterative hierarchical interpolation of probability densities (PDF)
at sample locations during NeRF progressive training. This allows us to re-
duce the training time by 13 times. The approach also carries over to the
inference stage.

2. A coarse to fine deformation model HANeRF that diffuses blendshape pa-
rameters in a 3D grid and interpolates on sampled point locations with
correct deformations.

3. HANeRF maintains the compatibility to other NeRF pipelines, such that
dynamic, and deformable scenes can be learned and synthesized. We demon-
strate this in the case of a controllable NeRF-driven human 3D model on
the ZJU dataset.

2 Related Work

Analysis by synthesis [8] is a powerful paradigm, where the forward system pro-
duces appearance of a scene or an object and the training goal is to find the best
reconstruction by maximising the agreement between the measurement and the
prediction. Differentiable rendering techniques [14] are excellent tools for anal-
ysis by synthesis. They can be applied to various 3D reconstruction tasks, even
from single images and they can be trained without explicit supervision. Neu-
ral rendering [30] applies a neural network (NN) in the rendering pipeline. In
most cases a neural network represents the 3D volumes implicitly. They use the
location as input to the network and the output is an attribute of the volume.
Neural signed distance functions [22, ?] encode the distance to the surface. Occu-
pancy networks [16] and implicit fields [2] encode whether the location is inside
or outside the object.

Neural radiance fields (NeRF) [15] is arguably one of the most successful neu-
ral rendering techniques. It represents the volume with a Multi Layer Perceptron
(MLP) that computes the density and colour for each 3D location. Numerical
integration is used to photometrically render pixel colours. NeRF has inspired
many follow-up works and extensions, e.g.in the wild undergoing severe lighting
changes [15], multi-view surface reconstruction [32], and learning surface light
fields [20]. Mip-NeRF [1] improves upon NeRF through continuous scale repre-
sentation of the scene while using anti-aliased frustums instead of rays. While
these works are limited to static scenes, Nerfies [23] extend the idea to non-rigidly
deforming objects within the scene through deformation field optimization with

Hierarchical Articulated NeRF 3

rigidity priors. D-NeRF [26] also addresses dynamic scenes, where a temporal
component is considered to map the scene from a canonical space with defor-
mation through time. NeRF Volumes [12] deal with deformable 3D scenes with
a voxel grid and a warp field that are regressed from a 3D CNN. To specifically
address humans, Neural body [25] and [24] learn an implicit deformable neural
body representation which can be controlled for 3D human reconstruction and
synthesis. GIRAFFE [19] leverages NeRF for low resolution features where a 2D
neural rendering network computes an output image from the feature grid.

2.1 Faster inference

Inference speed was a major downside of early NeRF approaches. However, many
clever approaches and tricks have been presented recently to improve the infer-
ence speed of NeRF. Some of them are even capable of speeding up the forward
path by a thousand times and thus enabling real-time inference.

Most techniques for fast inference resample NeRF into an data structure
that is more render-friendly. Some use a grid [6], Plenoctrees [33] an octree, and
NeX [31] uses multiplane images. Further speedup is achieved by reducing the
number of samples to compute the pixel colour by omitting empty regions of the
volume. Neural Sparse Voxel Fields [11] builds a grid in a self-supervised way to
keep track of the empty volumes. KiloNeRF [27] trains separate networks for all
voxels in a grid. As these networks are much smaller and faster to compute, they
achieve 600x speedup. However they need a pre-trained NeRF in their training
process. Autoint [10] learns to integrate ray segments to reduce the number of
samples and Cole et al. [5] turn a pre-trained NeRF into a light-field, thus the
method only has to access a neural network once per ray. They achieve 128x
speedup.

The above mentioned methods however have shortcomings. Except for Fast-
NeRF [6] they are unable to handle deformable, dynamic or controllable scenes
and most lose the differentiability and trainability after resampling NeRF. De-
spite all the efforts of these pioneering works to speed up the inference, little
progress has been made in reducing the lengthy training time. Therefore, our
objective is to take a closer look at NeRF training and speed up the learning
process.

2.2 Deformation & Controllability

Standard training strategies for NeRF require days to train for a single scene.
To improve upon this, some works investigate methods for potential efficiency
increase.

DONeRF [18] uses the ground truth depth to train a depth classifier to reduce
the number of samples. The approach of Lomdardi et al. [13] uses volumetric
primitives that help to ignore empty regions of space. While both ideas can
improve training time, they require the knowledge of the scene depth a priori.
DSNerf [9] speeds up training 2-6x using depth as a supervision signal (running
SfM).

4 Hierarchical Articulated NeRF

Methods like Learned initializations [29], Stereo Radiance Fields [3] and Pix-
elNeRF [34] first perform a large scale pre-training process then use the encoded
features to condition NeRF. Then only a few minutes of fine-tuning is needed
for high quality results on novel view synthesis. We consider the ideas in these
works orthogonal to ours and we focus on the original NeRF training task with
multiview images. To the best of our knowledge only PlenOctrees [33] claims to
speed up NeRF training in its original setting. First, after a small number of
iterations they fix an octree, then use it to guide the sampling for the training
and achieve 5x speedup.

To pave the way to a wider acceptance and use of NeRF, the training time
needs to be reduced considerably. Moreover, we address common limitations
of current methods. We do not require resampling at inference time, thus we
preserve the differentiability. We are also able to handle dynamic and deformable
scenes. Specifically we show animations of 3D humans.

contrast to neural body [25] which diffuses the latent vectors used to condition
NeRF, we instead diffuse the blendshape parameters used to deform the point.
Moreover, we use an interpolation on the blendshape parameter for the sampled
point instead of an additional MLP [24] in order to calculate the deformation
field. We provide the detail of these contributions in our method section 4. Before
that, we introduce our NeRF notation and the necessary mathematical concepts.

3 Background: Neural Radiance Fields

Neural Radiance Field [17] were designed to solve the multiview stereo recon-
struction problem, where the input of the training process is a set of images and
the corresponding calibrated camera parameters, both intrinsic and extrinsic.
The output of the training is an implicit representation of the scene, which can
be used for novel view synthesis during inference. The depth information can
also be extracted.

NeRF [17] represents the volume implicitly with a neural network F , an MLP
in the original implementation. The network calculates the density σ ∈ R and
RGB colour c ∈ R3 values for each 3D location x ∈ R3, as [σ, c] = F (x,d). The
scene is rendered by integrating the weighted colour values along rays cast from
each pixel. Let us denote the ray r(t) = o+td, where o ∈ R3 is the origin, d ∈ R3

is the direction and tn < t < tf . Then, the expected colour C is calculated as

C(r) =

∫ tf

tn

T (t)σ(r(t))c(r(t),d) dt, (1)

where T (t) = exp

(
−
∫ t

tn

σ(r(s)) ds

)
. (2)

Hierarchical Articulated NeRF 5

scene

frustum

patch

camera

center

hierarchical sampling training loss
cast rays

cast rays

cast rays

upsample

upsample int
eg

rat
ion

|| ||2-

Fig. 1. Rays are cast for pixels in a patch and points are sampled along the rays
and the transmission probabilities are obtained by the evaluation of a NN. Next the
probabilities are upsampled, and sampling is repeated on a higher resolution but only
at the most probable locations according to the previous estimate. The predicted patch
is obtained by numerical integration. The training is done by minimizing the L2 loss
between the prediction and ground truth.

In practice a numerical integration technique is used to approximate C(r) on a
finite number random samples along the ray.

C(r) =

N∑
i=1

Ti(1− exp(−σiδi))ci, (3)

where Ti = exp

−
i−1∑
j=1

σjδj

 , (4)

where δi = ti+1−ti are the distances between samples ti along the ray. Here ti are
randomly sampled within the intervals [tn+

i−1
N (tf − tn), tn+

i
N (tf − tn)], where

tf and tn are the closest and furthest points of the rendering interval respectively.
The training is done by optimising the L2 loss between the predicted pixel colours
and the ground truth Cgt.

L =
∑
r∈A

∥C(r)− Cgt(r)∥22 , (5)

where A is the set of rays.
This process is very slow both for the training and for the inference due to

the high number of points sampled for each ray.

4 Method

In vanilla NeRF, the samples are evenly distributed. This is inefficient, as most
of the volume is empty. A lot of computation is used up on samples that do not
contribute to the final pixel colour.

The rendering time is directly proportional to the number of samples, thus
can be reduced by sampling a fewer times only from dense locations. The main
challenge is to estimate the locations of those dense regions before the sampling.
The key steps of our solution are

6 Hierarchical Articulated NeRF

1. Render the image at a lower resolution.
2. Keep track of the probability densities (PDF) at the sample locations.
3. Upsample the parameters of the PDF to the high resolution.
4. Use the PDF estimate to sample only at dense locations for the high resolu-

tion image.
5. Repeat the process in an image pyramid.

Notice that we only have to sample densely at the first pyramid layer at a very
low resolution. For the higher layers the number of samples are much fewer.
The computation cost is dominated by the number of samples at the highest
resolution layer. The method is illustrated on Figure 1 Next we explain the
process in detail.

4.1 Rendering

We sample the volume in a regular 3D grid the frustum. Instead of sampling
each point independently, we add the same random shift to each sample. We
denote the ray with r(h,w, t) to highlight its dependence on the pixel locations
u ∈ [−1,+1] and v ∈ [−1,+1] in clip space,

r(u, v, t) = o+ td(u, v). (6)

Note that the origin of the ray does not depend on the pixels, and the direction
d is normalized. The grid locations are computed as

ti = tn +
i

N
(tf − tn) + ϵ, (7)

where ϵ ∼ U [0, 1/N], (8)

uk = −1 +
k + 0.5

H
(1− (−1)), (9)

vl = −1 +
l + 0.5

W
(1− (−1)), (10)

where i < N , k < H, l < W are natural numbers and H, W image height and
width respectively. We calculate C(r) for all pixels according to 3.

During the computation we keep track of the probability density values with
wkli = Tkli(1− exp(−σkliδ))), where we omit the indices for δ as they are all the
same.

During rendering we evaluate the network at multiple resolutions in a pyra-
mid. Let us denote the index in the pyramid with a superscript. At the lowest
resolution (H0,W 0 and N0) we evaluate all locations in the grid. At the higher
levels we only evaluate it at the dense locations predicted by the previous level.
The prediction is calculated by upscaling the values wn−1

kli using bilinear inter-
polation.

ŵn = upscale3D(wn−1), (11)

Hierarchical Articulated NeRF 7

where ŵn are the estimated probabilities. For each ray, only the most probable
Kn locations are evaluated,

{(k, l, i) : Kn >
∑
j

1[ŵn
klj > ŵn

kli]}. (12)

for the rest, wn
kli are set to zero. The pixel colours are calculated the same way,

except now with only Kn samples as the rest of the volume is considered empty.
We can repeat this process for each layer in the image pyramid, until we

reach the highest resolution. The effective number of samples per pixel at the
highest resolution can be computed as

Keff =

L∑
n=0

Kn HnWn

HLWL
. (13)

We upscale the resolution by a factor of 2 between each level. Thus, the compu-
tation is dominated by KL, as the contribution of the lower levels are small.

We aim to exploit this pyramid structure during training as well.

4.2 Training

The training is done on patches instead of rays. We set the patch size so it
covers one pixel at the lowest resolution. We cast rays for each pixel inside the
patch for each resolution. We compute the pixel colours for each layer similarly
as described for the full image rendering. At the margins we pad the patch
with repeated values of the lower resolution probability densities in order to
use bilinear interpolation for upscaling. For the lowest resolution this effectively
extends the value for that one pixel to estimate the probabilities for all rays at
the next pyramid level.

The patches are randomly selected at the highest resolution and the ground
truth colours for the lower resolution samples are computed by downscaling the
patches using area interpolation. The loss function is the L2 loss between the
predicted and ground truth patches. For level n in the pyramid the loss is

Ln =
∑
p∈Pn

∑
r∈p

∥∥Cn(r)− Cn
gt(r)

∥∥2
2
, (14)

where p is a patch in the training set of patches Pn. Note that the set of training
patches are different at each level, as the density of rays inside the frustum
depends on the resolution. Similarly, the ground truth colours Cn

gt have to be
calculated by downscaling the high resolution training images by the appropriate
amount.

In our method we propose to learn a separate MLP F i for each level in the
pyramid, as it is easier to train one network for one resolution. The training or
inference time is not affected by this change, only the model size, which grows
5x for the 5 levels in the pyramid. In order to help the training at higher levels,
we first train the lower levels in a progressive way. We iteratively optimize L0,
then L1, and so forth up to LL.

8 Hierarchical Articulated NeRF

canonical volumedeformed volume

InvSTAR

STAR

NeRF

integration

Fig. 2. Our setup for animating virtual 3D humans. We diffuse the STAR human 3D
model into the full deformed volume, then invert it to get the points in the canonical
volume. The output pixel values are computed by numerical integration.

4.3 Virtual human

Our method is compatible with controllable models such as the STAR [21] human
3D model, thus we can speed up the training and rendering of deformable objects.
Similar to prior works [23, ?], our model consist of a canonical volume that is
modelled by NeRF and a deformed volume to which the deformation model can
transform each point in the canonical volume. The (forward) deformation model
in our case is the STAR human 3D model,

y = STAR(x, s), (15)

where x ∈ R3 and y ∈ R3 are points in the canonical and the deformed volumes
respectively. The STAR model can be controlled by s, which contains the pose
and shape parameters for a human model.

In order to render deformed scenes one needs to invert the STAR model,
as the rays are cast inside the deformed volume and we have to get the cor-
responding points in the canonical volume for rendering. We call this function
InvSTAR,

x = InvSTAR(y, s). (16)

Note that we the STAR model is only interpreted on the surface and does not
have a meaning in the whole 3D scene outside of the surface. Therefore its
extension has to satisfy

x = InvSTAR(STAR(x, s), s), (17)

where x is inside the domain of STAR. Outside we prefer smooth solutions
to prevent the deformation from causing artefacts. We can analytically invert
STAR, if we can diffuse some of its model parameters (not s) into the 3D volume.
The rendering process is illustrated on Figure 2.

Hierarchical Articulated NeRF 9

Next we explain the STAR blendshape model and the inversion in detail.
The deformations can be defined as:

y =
∑
j

aj(x)Pj(s)(x+B(x)s), (18)

where x and y are represented in homogeneous coordinates. The shape is com-
puted via a the linear combination B(x)s, then the points are reposed with Pj(s),
which are 4 × 4 rigid transformation matrices. Pj(s) and B(x) are the position
and shape blendshape fuctions respectively and the subscripts j denote the in-
dices of the joints. The final output is computed by using a linear combination
of the Pj(s) transformations, where the weights aj(x) are position dependent.
In the STAR model B(x) and aj(x) are explicitly given for a set of set of lo-
cations (vertices in a surface mesh). Pj(s) are factorized into a chain of rigid
transformations, where each transformation describes a rotation around a joint.

It is possible to invert STAR analytically, if we have access to the values
aj(x) and B(x),

x =

∑
j

aj(x)Pj(s)

−1

y −B(x)s. (19)

We estimate these values with āj(y) ≈ aj(x) and B̄(y) ≈ B(x) by diffusing the
blendshape parameters in the 3D deformed volume. Let yi = STAR(xi, s) for
the locations where aj and B are defined. Then,

B̄(y) =

∑
i

exp

(
−|y − yi|2

2∆2

)
B(xi)

∑
i

exp

(
−|y − yi|2

2∆2

) , (20)

where ∆ > 0 is a width parameter. The āj(y) values are computed similarly.
In general, there could be multiple x locations that produce the same y.

Therefore we check consistency by calculating the difference y−STAR(InvSTAR(y, s), s),
where STAR is extended to the full 3D volume by diffusing its parameters. We
only consider the points in the rendering where the difference is under a thresh-
old, otherwise we set its contribution to zero.

Our speedup technique is fully compatible with using any kind of deformation
model, as we only need to apply the deformation (in our case InvSTAR) on the
location inputs for the NN F . As the number of InvSTAR evaluations are the
same as the number of samples, the speedup for the deformable model is the
same as for the rigid.

We train our model with multiview images of a synthetic avatar rendered in
standard T-pose from multiple views. This way we do not estimate s during the
training. We consider estimating and refining STAR parameters during training
orthogonal to our approach.

10 Hierarchical Articulated NeRF

Table 1. Comparison with state-of-the-art on ’ship’ scene.

Method NeRF [17] PlenOctrees [33] Ours (HIPNeRF)
PSNR 29.1 29.1 27.5
Time (hours) 60 16 4.5

4.4 Implementation details

In our implementation we use an eight layer MLP with width of 256 for each
layer and encoding in the same way as in [17]. We use positional encoding to
convert the input coordinates x. For the implementation, we use an adaptive
batch size that contains 64k samples at a time, which is 512 for 128 samples per
ray with patch size one. We use different batch sizes for different settings since
a too large batch size slows down convergence and a too small batch size slows
down computation speed, as it cannot take advantage of the GPU.

5 Experiments

We first conduct several ablation studies on the number of samples needed for
reconstruction at different levels of upsampling. Then we investigate the effect
of different samples selected for each level of the pyramid in a multi-stage setup.
Then we compare our method with state-of-the-art for static scenes. We also
demonstrate that our model is suitable for deformable object and can be used
for animating 3D humans.

5.1 Dataset and evaluation metrics

Following NeRF [17], we choose synthetic renderings of 8 scenes (’chair’, ’drums’,
’ficus’, ’hotdog’, ’lego’, ’materials’, ’mic’ and ’ship’) to compare with state-of-
the-art. For each scene, 100 views are rendered for training and 400 views are
rendered for testing, all at 800 × 800 resolution. We report PSNR (higher is
better) for quantitative comparison. For the ablation studies, we choose the
’lego’ scene. To demonstrate our model’s ability to deal with deformable objects,
we create a new synthetic sequence called ’Claudia’ using traditional rendering
techniques. We render 100 images from random viewpoints in standard T-pose.

ZJU dataset [?] is captured using a light stage, where 24 industrial cameras
are

5.2 Comparison with state-of-the-art

5.3 Ablation studies

Vanilla sampling We first train several vanilla NeRF [17] models for different
resolutions at resolution 50×50, 100×100, 200×200 and 400×400. We use a fixed
number of samples for each resolution, 64 samples for 50×50, 128 for 100×100,

Hierarchical Articulated NeRF 11

100 101 102

number of samples

15.0

17.5

20.0

22.5

25.0

27.5

30.0

32.5
ps

nr
psnr vs. number of samples

1x
2x
4x
8x

Fig. 3. Effect of number of samples: we show four scenarios on a two-stage pyramid
with upsampling factors 1x, 2x,3x and 4x. The horizontal axis shows the number of
samples selected based on the lower resolution probabilities.

and so on, doubling the depth resolution along with the image resolution. We
tested the trained model in a of two-stage pyramid. For example, we could use
the trained vanilla NeRF model of 200×200 as the first stage of the pyramid and
the model of 400×400 as the second level. In this case there is a resolution change
(see Figure 3 ’2x’), where we use bilinear interpolation to upsample the first stage
to the second stage. As shown in Figure 3, by varying the number of samples
(the x-axis) of the second stage from 1 to the maximum number of samples,
the PSNR (the y-axis) of results from the second stage changes accordingly. We
found that the model can produce descent results without using the maximum
number of samples. Figure 3 shows that 20, 50, 128 samples are needed for ’2x’,
’4x’, ’8x’ settings, respectively, to reach the peak performances.

Number of effective samples In this experiment, we design a four-stage
pyramid and find out the best number of samples for each stage. We set the
number of samples to K0 = 64 in the lowest level in the pyramid. Then we test
1840 combinations for the second (K1), third (K2), and fourth (K3) stage. For
each combination [K0,K1,K2,K3], we calculate the effective number of samples

12 Hierarchical Articulated NeRF

101 102

number of effective samples

15.0

17.5

20.0

22.5

25.0

27.5

30.0

32.5
ps

nr
psnr vs. number of effective samples

Tested points
Tested points (pareto)

Fig. 4. Effect of pyramid sampling. Each point represents a four-stage pyramid with
different number of samples for their corresponding stages.

through

Keff =

3∑
n=0

(Kn/µ2
n), (21)

with the scale µ and Kn ≤ 2 ·Kn−1, n = 1, 2, 3. Figure 4 shows the scatter plot
for all the combinations. The obvious trend is that more effective samples lead to
better PSNR. Among the Pareto optimal points, there are a few PSNR jumps,
the curve is not smooth. The jumps correspond to increasing the number of
samples at earlier levels. The PSNR saturates at 32.5 effective samples, where the
Pareto optimal sampling combination is [K0 = 64,K1 = 24,K2 = 20,K3 = 16].
We use this sampling combination for the first four stages of the pyramid training
for all following experiments. We selected K4 = 6 and N4 = 1024 at 800 × 800
resolution. The number of effective samples are 11.875, which that the inference
speedup is 16x, as NeRF that uses 192 samples. the training the speedup is , as
progressive training adds overhead.

5.4 Comparison with SOTA on static scenes

In Table 1, we compare our method with the original NeRF [17] and PlenOc-
trees [33] on the ’ship’ scene. NeRF takes 60 hours to reach the PSNR of 29.1,

Hierarchical Articulated NeRF 13

Fig. 5. Qualitative results on Claudia data. The top row shows frontal views and the
bottom shows side views.

GT NeRF PlenOctrees Ours

Fig. 6. Qualitative comparison with the methods from the original NeRF [17] and
PlenOctrees [33] for the ’lego’ scene.

PlenOctrees achieves that (29.1) with less time (16 hours), while our method
can achieve a competitive performance with only 4.5 hours of training. Figure
6 shows qualitative comparison with NeRF [17] and PlenOctree [33] using the
Lego scene in the blender dataset. Figure 7 shows our results on all eight scenes.

5.5 Animating virtual humans

Our model is trained with multi-view images on a synthetically rendered virtual
asset ’Claudia’ in T-pose with uniform background. Figure 5 shows qualitative
results on synthesizing new poses. The experiment demonstrates that our model
can speed up NeRF for animating with deformable objects, like 3D humans.

6 Conclusion

In this paper, we propose a novel method HIPNeRF, which speeds up NeRF
training using importance sampling. During the volumetric rendering, we sam-
ple the NeRF network at different resolutions in a hierarchical pyramid. At the

14 Hierarchical Articulated NeRF

Fig. 7. Our results on eight scenes. The first and third rows are the ground truth, the
second and fourth rows are our results.

lowest resolution volume sampling follows the vanilla NeRF. For higher reso-
lutions, we interpolate the probability densities (PDF) of samples of the lower
resolution rendering, which allows us to sample points only at the most probable
locations. By repeating the process we can achieve up to 13× speedup at full
resolution. The approach carries over to the inference stage and also allows for
dealing with scenarios containing highly deformable and articulated objects. We
present the results of HIPNeRF on standard datasets, as well as on dynamic
scenes where HIPNeRF is used to animate 3D virtual humans.

7 Societal and ethical impact

The proposed work addresses photo-realistic rendering which has great potential
for bettering various aspects of our society including content creation for educa-
tion, social interaction and entertainment to name a few. However, as with every
new technological advancements we need to be aware of the ethical concerns
which in the case of virtual and augmented reality range from manipulation (in-
cluding consumer manipulation), privacy and data issue, to psychological cases of

Hierarchical Articulated NeRF 15

desensitization and social isolation. As responsible developers of this technology
we should make every effort to initiate and participate in open and transparent
procedures that would prevent and mitigate these risks.

16 Hierarchical Articulated NeRF

References

1. Barron, J.T., Mildenhall, B., Tancik, M., Hedman, P., Martin-Brualla, R., Srini-
vasan, P.P.: Mip-nerf: A multiscale representation for anti-aliasing neural radiance
fields. arXiv preprint arXiv:2103.13415 (2021)

2. Chen, Z., Zhang, H.: Learning implicit fields for generative shape modeling. In:
CVPR. pp. 5939–5948 (2019)

3. Chibane, J., Bansal, A., Lazova, V., Pons-Moll, G.: Stereo radiance fields (srf):
Learning view synthesis for sparse views of novel scenes. In: CVPR. pp. 7911–7920
(2021)

4. Cole, F., Genova, K., Sud, A., Vlasic, D., Zhang, Z.: Differentiable surface rendering
via non-differentiable sampling. In: ICCV. pp. 6088–6097 (2021)

5. Cole, F., Genova, K., Sud, A., Vlasic, D., Zhang, Z.: Differentiable surface rendering
via non-differentiable sampling. In: ICCV. pp. 6088–6097 (October 2021)

6. Garbin, S.J., Kowalski, M., Johnson, M., Shotton, J., Valentin, J.: Fastnerf: High-
fidelity neural rendering at 200fps. arXiv preprint arXiv:2103.10380 (2021)

7. Hedman, P., Srinivasan, P.P., Mildenhall, B., Barron, J.T., Debevec, P.: Baking
neural radiance fields for real-time view synthesis. In: ICCV (2021)

8. Hejrati, M., Ramanan, D.: Analysis by synthesis: 3d object recognition by object
reconstruction. In: CVPR. pp. 2449–2456 (2014)

9. Kangle Deng, Andrew Liu, J.Y.Z., Ramanan, D.: Depth-supervised nerf: Fewer
views and faster training for free. arXiv preprint arXiv:2107.02791 (2021)

10. Lindell, D.B., Martel, J.N., Wetzstein, G.: Autoint: Automatic integration for fast
neural volume rendering. In: CVPR. pp. 14556–14565 (2021)

11. Liu, L., Gu, J., Lin, K.Z., Chua, T.S., Theobalt, C.: Neural sparse voxel fields.
arXiv:2007.11571 (2020)

12. Lombardi, S., Simon, T., Saragih, J., Schwartz, G., Lehrmann, A., Sheikh, Y.:
Neural volumes: Learning dynamic renderable volumes from images. arXiv preprint
arXiv:1906.07751 (2019)

13. Lombardi, S., Simon, T., Schwartz, G., Zollhoefer, M., Sheikh, Y., Saragih, J.:
Mixture of volumetric primitives for efficient neural rendering. ACM TOG (2021)

14. Loper, M.M., Black, M.J.: Opendr: An approximate differentiable renderer. In:
ECCV. pp. 154–169. Springer (2014)

15. Martin-Brualla, R., Radwan, N., Sajjadi, M.S., Barron, J.T., Dosovitskiy, A., Duck-
worth, D.: Nerf in the wild: Neural radiance fields for unconstrained photo collec-
tions. arXiv preprint arXiv:2008.02268 (2020)

16. Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., Geiger, A.: Occupancy
networks: Learning 3d reconstruction in function space. In: CVPR. pp. 4460–4470
(2019)

17. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng,
R.: Nerf: Representing scenes as neural radiance fields for view synthesis. In: ECCV.
pp. 405–421. Springer (2020)

18. Neff, T., Stadlbauer, P., Parger, M., Kurz, A., Alla Chaitanya, C.R., Kaplanyan,
A., Steinberger, M.: Donerf: Towards real-time rendering of neural radiance fields
using depth oracle networks. arXiv e-prints pp. arXiv–2103 (2021)

19. Niemeyer, M., Geiger, A.: Giraffe: Representing scenes as compositional generative
neural feature fields. In: CVPR. pp. 11453–11464 (2021)

20. Oechsle, M., Niemeyer, M., Reiser, C., Mescheder, L., Strauss, T., Geiger, A.:
Learning implicit surface light fields. In: 2020 International Conference on 3D Vi-
sion (3DV). pp. 452–462. IEEE (2020)

Hierarchical Articulated NeRF 17

21. Osman, A.A.A., Bolkart, T., Black, M.J.: STAR: A sparse trained articulated hu-
man body regressor. In: European Conference on Computer Vision (ECCV). pp.
598–613 (2020), https://star.is.tue.mpg.de

22. Park, J.J., Florence, P., Straub, J., Newcombe, R., Lovegrove, S.: Deepsdf: Learning
continuous signed distance functions for shape representation. In: CVPR. pp. 165–
174 (2019)

23. Park, K., Sinha, U., Barron, J.T., Bouaziz, S., Goldman, D.B., Seitz, S.M., Martin-
Brualla, R.: Nerfies: Deformable neural radiance fields. In: ICCV. pp. 5865–5874
(2021)

24. Peng, S., Dong, J., Wang, Q., Zhang, S., Shuai, Q., Zhou, X., Bao, H.: Animatable
neural radiance fields for modeling dynamic human bodies. In: ICCV (2021)

25. Peng, S., Zhang, Y., Xu, Y., Wang, Q., Shuai, Q., Bao, H., Zhou, X.: Neural
body: Implicit neural representations with structured latent codes for novel view
synthesis of dynamic humans. In: CVPR. pp. 9054–9063 (2021)

26. Pumarola, A., Corona, E., Pons-Moll, G., Moreno-Noguer, F.: D-NeRF: Neural
Radiance Fields for Dynamic Scenes. In: CVPR (2021)

27. Reiser, C., Peng, S., Liao, Y., Geiger, A.: Kilonerf: Speeding up neural radiance
fields with thousands of tiny mlps. arXiv preprint arXiv:2103.13744 (2021)

28. Sun, C., Sun, M., Chen, H.T.: Direct voxel grid optimization: Super-fast conver-
gence for radiance fields reconstruction. arXiv preprint arXiv:2111.11215 (2021)

29. Tancik, M., Mildenhall, B., Wang, T., Schmidt, D., Srinivasan, P.P., Barron, J.T.,
Ng, R.: Learned initializations for optimizing coordinate-based neural representa-
tions. In: CVPR. pp. 2846–2855 (2021)

30. Tewari, A., Fried, O., Thies, J., Sitzmann, V., Lombardi, S., Sunkavalli, K., Martin-
Brualla, R., Simon, T., Saragih, J., Nießner, M., et al.: State of the art on neural
rendering. In: Computer Graphics Forum. vol. 39, pp. 701–727. Wiley Online Li-
brary (2020)

31. Wizadwongsa, S., Phongthawee, P., Yenphraphai, J., Suwajanakorn, S.: Nex: Real-
time view synthesis with neural basis expansion. In: CVPR. pp. 8534–8543 (2021)

32. Yariv, L., Kasten, Y., Moran, D., Galun, M., Atzmon, M., Ronen, B., Lipman, Y.:
Multiview neural surface reconstruction by disentangling geometry and appear-
ance. NeurIPS 33 (2020)

33. Yu, A., Li, R., Tancik, M., Li, H., Ng, R., Kanazawa, A.: Plenoctrees for real-time
rendering of neural radiance fields. arXiv preprint arXiv:2103.14024 (2021)

34. Yu, A., Ye, V., Tancik, M., Kanazawa, A.: Pixelnerf: Neural radiance fields from
one or few images. In: CVPR. pp. 4578–4587 (2021)

